更改

跳到导航 跳到搜索
添加3字节 、 2020年10月22日 (四) 19:15
第43行: 第43行:  
We can define a triangle among the triple of vertices <math>i</math>, <math>j</math>, and <math>k</math> to be a set with the following three edges: {(i,j), (j,k), (i,k)}.  
 
We can define a triangle among the triple of vertices <math>i</math>, <math>j</math>, and <math>k</math> to be a set with the following three edges: {(i,j), (j,k), (i,k)}.  
   −
我们可以通过'''<font color="#FF8000">边</font>'''集<math>((i,j),(j,k),(i,k))</math>将由'''<font color="#FF8000">顶点</font>'''<math>i</math>,<math>j</math>和<math>k</math>组成的三元组定义为一个三角形。
+
我们可以通过'''<font color="#FF8000">边</font>'''集<math>((i,j),(j,k),(i,k))</math>,将由'''<font color="#FF8000">顶点</font>'''<math>i</math>,<math>j</math>和<math>k</math>组成的三元组定义为一个三角形。
    
We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>.  
 
We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>.  
80

个编辑

导航菜单