更改

跳到导航 跳到搜索
删除3字节 、 2020年10月22日 (四) 20:17
第55行: 第55行:  
Assuming that triadic closure holds, only two strong edges are required for a triple to form. Thus, the number of theoretical triples that should be present under the triadic closure hypothesis for a vertex <math>i</math> is <math>\tau (i) = \binom{d_i}{2}</math>, assuming <math>d_i \ge 2</math>. We can express <math>\tau (G) = \frac{1}{3} \sum_{i\in V} \ \tau (i)</math>.
 
Assuming that triadic closure holds, only two strong edges are required for a triple to form. Thus, the number of theoretical triples that should be present under the triadic closure hypothesis for a vertex <math>i</math> is <math>\tau (i) = \binom{d_i}{2}</math>, assuming <math>d_i \ge 2</math>. We can express <math>\tau (G) = \frac{1}{3} \sum_{i\in V} \ \tau (i)</math>.
   −
假设三元闭包性质成立,则一个三元组仅需要两条强联系便可形成三角形。 因此,在三元闭包性质成立的前提下,理论上顶点<math>i</math>所涉及的三角形的数量为<math>\tau(i) = \binom{d_i}{2}</math>,假设<math>d_i \ge 2</math>。我们可以表示<math>\tau(G) = \frac{1}{3} \sum_{i\in V} \ \tau(i)</math>。
+
假设三元闭包性质成立,则一个三元组仅需要两条强联系便可形成三角形。 因此,在三元闭包性质成立的前提下,顶点<math>i</math>所涉及的理论三角形的数量为<math>\tau(i) = \binom{d_i}{2}</math>,假设<math>d_i \ge 2</math>。我们可以表示<math>\tau(G) = \frac{1}{3} \sum_{i\in V} \ \tau(i)</math>。
    
Now, for a vertex <math>i</math> with <math>d_i \ge 2</math>, the [[clustering coefficient]] <math>c(i)</math> of vertex <math>i</math> is the fraction of triples for vertex <math>i</math> that are closed, and can be measured as <math>\frac{\delta (i)}{\tau (i)}</math>. Thus, the [[clustering coefficient]] <math>C(G)</math> of graph <math>G</math> is given by <math>C(G) = \frac {1}{N_2} \sum_{i \in V, d_i \ge 2} c(i)</math>, where <math>N_2</math> is the number of nodes with degree at least 2.
 
Now, for a vertex <math>i</math> with <math>d_i \ge 2</math>, the [[clustering coefficient]] <math>c(i)</math> of vertex <math>i</math> is the fraction of triples for vertex <math>i</math> that are closed, and can be measured as <math>\frac{\delta (i)}{\tau (i)}</math>. Thus, the [[clustering coefficient]] <math>C(G)</math> of graph <math>G</math> is given by <math>C(G) = \frac {1}{N_2} \sum_{i \in V, d_i \ge 2} c(i)</math>, where <math>N_2</math> is the number of nodes with degree at least 2.
80

个编辑

导航菜单