更改

跳到导航 跳到搜索
添加30字节 、 2020年10月24日 (六) 16:38
第35行: 第35行:  
A closely related model, the Erdős–Rényi model denoted G(n,M), assigns equal probability to all graphs with exactly M edges. With 0 ≤ M ≤ N, G(n,M) has <math>\tbinom{N}{M}</math> elements and every element occurs with probability <math>1/\tbinom{N}{M}</math>.  The latter model can be viewed as a snapshot at a particular time (M) of the random graph process <math>\tilde{G}_n</math>, which is a stochastic process that starts with n vertices and no edges, and at each step adds one new edge chosen uniformly from the set of missing edges.
 
A closely related model, the Erdős–Rényi model denoted G(n,M), assigns equal probability to all graphs with exactly M edges. With 0 ≤ M ≤ N, G(n,M) has <math>\tbinom{N}{M}</math> elements and every element occurs with probability <math>1/\tbinom{N}{M}</math>.  The latter model can be viewed as a snapshot at a particular time (M) of the random graph process <math>\tilde{G}_n</math>, which is a stochastic process that starts with n vertices and no edges, and at each step adds one new edge chosen uniformly from the set of missing edges.
   −
一个密切相关的模型,Erdős-Rényi模型表示''G'' (''n'',''M''),给每一个正好有''M''条边的图赋予等概率。当0≤ ''M'' ≤ ''N'' 时,''G'' (''n'',''M'')具有 <math>\tbinom{N}{M}</math> 元素,且每个元素都以概率<math>1/\tbinom{N}{M}</math> 出现。后一个模型可以看作是随机图过程<math>\tilde{G}_n</math>某个特定时间(''M'')的一个快照,这个时间(''M'')是从 n 个顶点开始没有边的一个随机过程,每个步骤均匀地从缺失的边集中选择一个新的边。
+
一个相关性强的模型,Erdős-Rényi模型表示''G'' (''n'',''M''),给每一个正好有''M''条边的图赋予等概率。当0≤ ''M'' ≤ ''N'' 时,''G'' (''n'',''M'')具有 <math>\tbinom{N}{M}</math> 元素,且每个元素都以概率<math>1/\tbinom{N}{M}</math> 出现。后一个模型可以看作是随机图过程<math>\tilde{G}_n</math>某个特定时间(''M'')的一个快照,这个时间(''M'')是从 n 个顶点开始没有边的一个随机过程,每个步骤均匀地从缺失的边集中选择一个新的边。
      第43行: 第43行:  
If instead we start with an infinite set of vertices, and again let every possible edge occur independently with probability 0 < p < 1, then we get an object G called an infinite random graph. Except in the trivial cases when p is 0 or 1, such a G almost surely has the following property:
 
If instead we start with an infinite set of vertices, and again let every possible edge occur independently with probability 0 < p < 1, then we get an object G called an infinite random graph. Except in the trivial cases when p is 0 or 1, such a G almost surely has the following property:
   −
如果我们从一个无限的顶点集合开始,然后再次让每个可能的边以概率0 < ''p'' < 1独立出现,那么我们得到一个对象 ''G'' 称为'''<font color="#FF8000">无限随机图 Infinite Graph </font>'''。除了在 ''p'' = 0或1的平凡情况下,这样的 ''G'' 几乎肯定具有以下性质:
+
如果我们从一个无限的顶点集合开始,然后再次让每个可能的边以概率0 < ''p'' < 1独立出现,那么我们得到一个对象 ''G'' 称为'''<font color="#FF8000">无限随机图 Infinite Graph </font>'''。除了在 ''p'' = 0或1的平凡情况下,这样的 ''G'' 在大多数情况下肯定具有以下性质:
      第83行: 第83行:  
For M ≃ pN, where N is the maximal number of edges possible, the two most widely used models, G(n,M) and G(n,p), are almost interchangeable.
 
For M ≃ pN, where N is the maximal number of edges possible, the two most widely used models, G(n,M) and G(n,p), are almost interchangeable.
   −
对于 ''M''something ''pN'',其中 ''N'' 是可能的最大边数,两个最广泛使用的模型,''G'' (''n'',, ''M'')和 ''G'' (''n'',''p'')是几乎可互换的。
+
对于 ''M''something ''pN'',其中 ''N'' 是可能的最大边数,两个最广泛使用的模型,''G'' (''n'',, ''M'')和 ''G'' (''n'',''p'')在大多数情况下是可互换的。
     
526

个编辑

导航菜单