第119行: |
第119行: |
| The theory of random graphs studies typical properties of random graphs, those that hold with high probability for graphs drawn from a particular distribution. For example, we might ask for a given value of <math>n</math> and <math>p</math> what the probability is that <math>G(n,p)</math> is connected. In studying such questions, researchers often concentrate on the asymptotic behavior of random graphs—the values that various probabilities converge to as <math>n</math> grows very large. Percolation theory characterizes the connectedness of random graphs, especially infinitely large ones. | | The theory of random graphs studies typical properties of random graphs, those that hold with high probability for graphs drawn from a particular distribution. For example, we might ask for a given value of <math>n</math> and <math>p</math> what the probability is that <math>G(n,p)</math> is connected. In studying such questions, researchers often concentrate on the asymptotic behavior of random graphs—the values that various probabilities converge to as <math>n</math> grows very large. Percolation theory characterizes the connectedness of random graphs, especially infinitely large ones. |
| | | |
− | 随机图理论研究随机图的典型性质,即从特定分布中抽取的图的高概率性质。例如,我们可以要求一个给定的值 <math>n</math> 和 <math>p</math> 什么是 <math>G(n,p)</math> 连接的概率。在研究这些问题时,研究人员往往集中在随机图的渐近行为上——各种概率收敛到的值变得非常大。'''<font color="#FF8000">渗流理论 Percolation Theory </font>'''刻画了随机图,特别是无穷大图的'''<font color="#FF8000">连通性 Connectedness </font>'''。 | + | 随机图理论研究随机图的典型性质,即从特定分布中抽取的图的高概率性质。例如,我们可以要求一个给定的值 <math>n</math> 和 <math>p</math> <math>G(n,p)</math> 连接的概率。在研究这些问题时,研究人员往往集中在随机图的趋近行为上——各种概率收敛到的值变得非常大。'''<font color="#FF8000">渗流理论 Percolation Theory </font>'''刻画了随机图,特别是无穷大图的'''<font color="#FF8000">连通性 Connectedness </font>'''。 |
| | | |
| | | |
第127行: |
第127行: |
| Percolation is related to the robustness of the graph (called also network). Given a random graph of <math>n</math> nodes and an average degree <math>\langle k\rangle</math>. Next we remove randomly a fraction <math>1-p</math> of nodes and leave only a fraction <math>p</math>. There exists a critical percolation threshold <math>p_c=\tfrac{1}{\langle k\rangle}</math> below which the network becomes fragmented while above <math>p_c</math> a giant connected component exists. | | Percolation is related to the robustness of the graph (called also network). Given a random graph of <math>n</math> nodes and an average degree <math>\langle k\rangle</math>. Next we remove randomly a fraction <math>1-p</math> of nodes and leave only a fraction <math>p</math>. There exists a critical percolation threshold <math>p_c=\tfrac{1}{\langle k\rangle}</math> below which the network becomes fragmented while above <math>p_c</math> a giant connected component exists. |
| | | |
− | '''<font color="#FF8000">渗流 Percolation </font>''' 与图形(也称为网络)的'''<font color="#FF8000">健壮性 Robustness </font>'''有关。给定一个随机图形,其中的节点是 <math>n</math> 和一个平均度 <math>\langle k\rangle</math> 。接下来我们随机移除一部分概率为 <math>1-p</math> 的节点,只留下一部分概率为 <math>p</math> 的节点。存在一个'''<font color="#FF8000">临界渗透阈值 Critical Percolation Threshold </font>'''<math>p_c=\tfrac{1}{\langle k\rangle}</math>,当低于这个临界渗透阈值,网络变得支离破碎,而高于临界渗透阈值 <math>p_c</math> 的网络则存在一个巨大的'''<font color="#FF800">连接元件 Connected Component </font>'''(图论)。 | + | '''<font color="#FF8000">渗流 Percolation </font>''' 与图形(也称为网络)的'''<font color="#FF8000">紧密性 Robustness </font>'''有关。给定一个随机图形,其中的节点是 <math>n</math> 和一个平均度 <math>\langle k\rangle</math> 。接下来我们随机移除一部分概率为 <math>1-p</math> 的节点,只留下一部分概率为 <math>p</math> 的节点。存在一个'''<font color="#FF8000">临界渗透阈值 Critical Percolation Threshold </font>'''<math>p_c=\tfrac{1}{\langle k\rangle}</math>,当低于这个临界渗透阈值,网络变得支离破碎,而高于临界渗透阈值 <math>p_c</math> 的网络则存在一个巨大的'''<font color="#FF800">连接元件 Connected Component </font>'''(图论)。 |
| | | |
| <ref>{{cite book |title= Complex Networks: Structure, Robustness and Function |authors= Reuven Cohen and [[Shlomo Havlin]] |year= 2010 |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_com_net.php |publisher= Cambridge University Press}}</ref><ref name ="On Random Graphs" /> | | <ref>{{cite book |title= Complex Networks: Structure, Robustness and Function |authors= Reuven Cohen and [[Shlomo Havlin]] |year= 2010 |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_com_net.php |publisher= Cambridge University Press}}</ref><ref name ="On Random Graphs" /> |
第181行: |
第181行: |
| If edges, <math>M</math> in a random graph, <math>G_M</math> is large enough to ensure that almost every <math>G_M</math> has minimum degree at least 1, then almost every <math>G_M</math> is connected and, if <math>n</math> is even, almost every <math>G_M</math> has a perfect matching. In particular, the moment the last isolated vertex vanishes in almost every random graph, the graph becomes connected. | | If edges, <math>M</math> in a random graph, <math>G_M</math> is large enough to ensure that almost every <math>G_M</math> has minimum degree at least 1, then almost every <math>G_M</math> is connected and, if <math>n</math> is even, almost every <math>G_M</math> has a perfect matching. In particular, the moment the last isolated vertex vanishes in almost every random graph, the graph becomes connected. |
| | | |
− | 如果随机图中的边 <math>M</math>,<math>G_M</math> 足够大以确保几乎每个 <math>G_M</math> 的最小阶数至少为1,那么几乎每个 <math>G</math> 是连通的,如果 <math>n</math> 是偶数,则几乎每个 <math>G_M</math> 都有一个'''<font color="#FF8000">完美匹配 Perfect Matching </font>'''。特别是,在几乎每个随机图中,最后一个孤立点消失的那一刻,图会变连通。 | + | 如果随机图中的边 <math>M</math>,<math>G_M</math> 大到足以确保几乎每个 <math>G_M</math> 的最小阶数至少为1,那么几乎每个 <math>G</math> 是连通的,如果 <math>n</math> 是偶数,则几乎每个 <math>G_M</math> 都有一个'''<font color="#FF8000">完美匹配 Perfect Matching </font>'''。特别是,在几乎每个随机图中,最后一个孤立点消失的那一刻,图会变连通。 |
| | | |
| | | |