更改

跳到导航 跳到搜索
删除255字节 、 2020年10月25日 (日) 21:10
第1行: 第1行: −
此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
+
此词条暂由彩云小译翻译,翻译字数共744,未经人工整理和审校,带来阅读不便,请见谅。
    
{{Refimprove|date=November 2008}}
 
{{Refimprove|date=November 2008}}
第9行: 第9行:  
An adaptive system is a set of interacting or interdependent entities, real or abstract, forming an integrated whole that together are able to respond to environmental changes or changes in the interacting parts, in a way analogous to either continuous physiological homeostasis or evolutionary adaptation in biology. Feedback loops represent a key feature of adaptive systems, such as ecosystems and individual organisms; or in the human world, communities, organizations, and families.
 
An adaptive system is a set of interacting or interdependent entities, real or abstract, forming an integrated whole that together are able to respond to environmental changes or changes in the interacting parts, in a way analogous to either continuous physiological homeostasis or evolutionary adaptation in biology. Feedback loops represent a key feature of adaptive systems, such as ecosystems and individual organisms; or in the human world, communities, organizations, and families.
   −
适应系统是一组相互作用或相互依存的实体,真实的或抽象的,形成一个完整的整体,共同能够响应环境变化或相互作用部分的变化,类似于生物学中持续的生理稳态或进化适应。反馈循环代表了适应系统的一个关键特征,例如生态系统和个体有机体; 或者在人类世界、社区、组织和家庭中。
+
适应系统是一组相互作用或相互依存的实体,真实的或抽象的,形成一个完整的整体,共同能够响应相互作用部分的环境变化或变化,类似于生物学中持续的生理稳态或进化适应。反馈循环代表了适应系统的一个关键特征,例如生态系统和个体有机体; 或者在人类世界、社区、组织和家庭中。
      第39行: 第39行:  
Formally, the law can be defined as follows:
 
Formally, the law can be defined as follows:
   −
形式上,该法可以定义如下:
+
在形式上,该法可以定义如下:
      第47行: 第47行:  
Given a system <math>S</math>, we say that a physical event <math>E</math> is a stimulus for the system <math>S</math> if and only if the probability <math>P(S \rightarrow S'|E)</math> that the system suffers a change or be perturbed (in its elements or in its processes) when the event <math>E</math> occurs is strictly greater than the prior probability that <math>S</math> suffers a change independently of <math>E</math>:
 
Given a system <math>S</math>, we say that a physical event <math>E</math> is a stimulus for the system <math>S</math> if and only if the probability <math>P(S \rightarrow S'|E)</math> that the system suffers a change or be perturbed (in its elements or in its processes) when the event <math>E</math> occurs is strictly greater than the prior probability that <math>S</math> suffers a change independently of <math>E</math>:
   −
给定一个系统数学 s / math,我们说物理事件数学 e / math 是系统数学 s / math 的刺激,当且仅当事件数学 e / math 发生时,系统遭受变化或受到扰动的概率数学 p (s right tarrow s’ | e) / math 严格大于数学 s / math 独立于数学 e / math 遭受变化的先验概率:
+
给定一个系统,我们说物理事件 e </math > 是系统的一个刺激,当且仅当事件 e </math > 发生时,系统遭受变化或者被扰乱的概率 p (s 右侧行 s’ | e)严格大于先验概率 s </math > 遭受独立于数学的变化时:
      第55行: 第55行:  
<math>P(S \rightarrow S'|E)>P(S \rightarrow S') </math>
 
<math>P(S \rightarrow S'|E)>P(S \rightarrow S') </math>
   −
数学 p (s 右行 s’ | e) p (s 右行 s’) / 数学
+
P (s,s,s,s,s)
      第63行: 第63行:  
Let <math>S</math> be an arbitrary system subject to changes in time <math>t</math> and let <math>E</math> be an arbitrary event that is a stimulus for the system <math>S</math>: we say that <math>S</math> is an adaptive system if and only if when t tends to infinity <math>(t\rightarrow \infty)</math> the probability that the system <math>S</math> change its behavior <math>(S\rightarrow S')</math> in a time step <math>t_0</math> given the event <math>E</math> is equal to the probability that the system change its behavior independently of the occurrence of the event <math>E</math>. In mathematical terms:
 
Let <math>S</math> be an arbitrary system subject to changes in time <math>t</math> and let <math>E</math> be an arbitrary event that is a stimulus for the system <math>S</math>: we say that <math>S</math> is an adaptive system if and only if when t tends to infinity <math>(t\rightarrow \infty)</math> the probability that the system <math>S</math> change its behavior <math>(S\rightarrow S')</math> in a time step <math>t_0</math> given the event <math>E</math> is equal to the probability that the system change its behavior independently of the occurrence of the event <math>E</math>. In mathematical terms:
   −
假设数学 s / math 是一个随时间变化的任意系统,数学 t / math 是一个随时间变化的系统,数学 e / math 是一个随时间变化的事件,是系统数学 s / math 的一个刺激: 我们说数学 s / math 是一个适应性系统 当且仅当 t 趋向于无穷数学(t 右行右行) / 数学系统数学 s / math 改变其行为数学(s 右行 s’) / 时间步长数学 t / math 给定的事件数学 e / math 等于系统改变其行为与事件数学 e / math 的发生无关的概率。用数学术语来说:
+
s 是一个随时间变化的任意系统,e 是一个随时间变化的任意事件,是一个对系统的刺激当且仅当 t 趋于无穷大时(t 右下方)系统改变其行为的概率在一个时间步骤中(s 右下方)给定的事件[ math ]等于系统独立于事件发生而改变其行为的概率。用数学术语来说:
      第71行: 第71行:  
- <math> P_{t_0}(S\rightarrow S'|E) > P_{t_0}(S\rightarrow S') > 0 </math>
 
- <math> P_{t_0}(S\rightarrow S'|E) > P_{t_0}(S\rightarrow S') > 0 </math>
   −
- 数学 p { t0}(s right tarrow s’ | e) p { t0}(s right tarrow s’)0 / math
+
- < 数学 > p _ { t _ 0}(s 右侧 s’ | e) > p _ { t _ 0}(s 右侧 s’) > 0 </math >
    
#- <math> \lim_{t\rightarrow \infty} P_t(S\rightarrow S' | E) = P_t(S\rightarrow S')</math>
 
#- <math> \lim_{t\rightarrow \infty} P_t(S\rightarrow S' | E) = P_t(S\rightarrow S')</math>
第77行: 第77行:  
- <math> \lim_{t\rightarrow \infty} P_t(S\rightarrow S' | E) = P_t(S\rightarrow S')</math>
 
- <math> \lim_{t\rightarrow \infty} P_t(S\rightarrow S' | E) = P_t(S\rightarrow S')</math>
   −
- math lim { t right tarrow infty } p t (s right tarrow s’ | e) p t (s right tarrow s’) / math
+
- < math > lim _ { t right tarrow infty } p _ t (s right tarrow s’ | e) = p _ t (s right tarrow s’) </math >
      第85行: 第85行:  
Thus, for each instant <math>t</math> will exist a temporal interval <math>h</math> such that:
 
Thus, for each instant <math>t</math> will exist a temporal interval <math>h</math> such that:
   −
因此,对于每一个即时数学 t / math,都会存在一个时间间隔数学 h / math,这样:
+
因此,对于每一个瞬间 < math > t </math > 将存在一个时间间隔 < math > h </math > 这样的:
      第93行: 第93行:  
<math> P_{t+h}(S\rightarrow S' | E) - P_{t+h}(S\rightarrow S') < P_t(S\rightarrow S' | E) - P_t(S\rightarrow S')</math>
 
<math> P_{t+h}(S\rightarrow S' | E) - P_{t+h}(S\rightarrow S') < P_t(S\rightarrow S' | E) - P_t(S\rightarrow S')</math>
   −
数学 p { t + h }(s right tarrow s’ | e)-p { t + h }(s right tarrow s’) p t (s right tarrow s’ | e)-p t (s right tarrow s’) / math
+
P _ { t + h }(s 右侧 s’ | e)-p _ { t + h }(s 右侧 s’ | e) < p _ t (s 右侧 s’ | e)-p _ t (s 右侧 s’) </math >
      第103行: 第103行:  
In an adaptive system, a parameter changes slowly and has no preferred value.  In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”.  One of the most important qualities of self-adjusting systems is its “adaptation to the edge of chaos” or ability to avoid chaos.  Practically speaking, by heading to the edge of chaos without going further, a leader may act spontaneously yet without disaster.  A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications. Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.
 
In an adaptive system, a parameter changes slowly and has no preferred value.  In a self-adjusting system though, the parameter value “depends on the history of the system dynamics”.  One of the most important qualities of self-adjusting systems is its “adaptation to the edge of chaos” or ability to avoid chaos.  Practically speaking, by heading to the edge of chaos without going further, a leader may act spontaneously yet without disaster.  A March/April 2009 Complexity article further explains the self-adjusting systems used and the realistic implications. Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback.
   −
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力学的历史”。自调节系统最重要的特性之一是它能“适应混沌的边缘”或避免混沌的能力。实际上,如果一个领导者走向混乱的边缘而不走得更远,那么他就可以在没有灾难的情况下自发地行动。2009年3 / 4月的一篇文章进一步解释了自我调节系统的使用和现实意义。物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中。
+
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力学的历史”。自调节系统最重要的特性之一是它能“适应混沌的边缘”或避免混沌的能力。实际上,如果一个领导者走向混乱的边缘而不走得更远,那么他就可以在没有灾难的情况下自发地行动。2009年3/4月的一篇文章进一步解释了自我调节系统的使用和现实意义。物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中。
      第109行: 第109行:  
==Practopoiesis==
 
==Practopoiesis==
   −
How do various types of adaptations interact in a living system? ''Practopoiesis,'' a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which [[autopoiesis]] of the entire ''organism'' or a ''cell'' occurs through a hierarchy of [[allopoiesis|allopoietic]] interactions among ''components''.<ref name=Nikolic2015>{{cite journal|title=Practopoiesis: Or how life fosters a mind. |author=Danko Nikolić|date=2015|doi=10.1016/j.jtbi.2015.03.003|pmid = 25791287|volume=373|journal=Journal of Theoretical Biology|pages=40–61|arxiv=1402.5332}}</ref> This is possible because the components are organized into a [[poiesis|poietic]] hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
+
How do various types of adaptations interact in a living system? ''Practopoiesis,'' a term due to its originator [[Danko Nikolić]], is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which [[autopoiesis]] of the entire ''organism'' or a ''cell'' occurs through a hierarchy of [[allopoiesis|allopoietic]] interactions among ''components''.<ref name=Nikolic2015>{{cite journal|title=Practopoiesis: Or how life fosters a mind. |author=Danko Nikolić|date=2015|doi=10.1016/j.jtbi.2015.03.003|pmid = 25791287|volume=373|journal=Journal of Theoretical Biology|pages=40–61|arxiv=1402.5332}}</ref> This is possible because the components are organized into a [[poiesis|poietic]] hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
    
How do various types of adaptations interact in a living system? Practopoiesis, a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which autopoiesis of the entire organism or a cell occurs through a hierarchy of allopoietic interactions among components. This is possible because the components are organized into a poietic hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
 
How do various types of adaptations interact in a living system? Practopoiesis, a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which autopoiesis of the entire organism or a cell occurs through a hierarchy of allopoietic interactions among components. This is possible because the components are organized into a poietic hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
   −
在一个生命系统中,各种类型的适应性是如何相互作用的?拓扑实践,这个术语源于它的发明者 Danko nikoli,是对回答这个问题的适应机制层次的一个参考。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分之间的异体生成相互作用而发生的。这是可能的,因为组件被组织成一个极端层次结构: 一个组件的自适应操作导致另一个组件的创建。该理论提出,生命系统展示了一个由四个这样的适应性极化操作组成的等级体系:
+
在一个生命系统中,各种类型的适应性是如何相互作用的?拓扑实践,这个术语源于它的发明者 Danko nikoli,是对回答这个问题的适应机制层次的一个参考。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分之间的异体生成相互作用而发生的。这是可能的,因为组件被组织成一个极端层次结构: 一个组件的自适应操作导致另一个组件的创建。这个理论提出,生命系统展示了一个由四个这样的适应性生命活动组成的等级体系:
         −
     ''evolution'' (i) &rarr; ''gene expression'' (ii) &rarr; ''non gene-involving homeostatic mechanisms (anapoiesis)'' (iii) &rarr; ''final cell function'' (iv)
+
     ''[[evolution]]'' (i) &rarr; ''[[gene expression]]'' (ii) &rarr; ''non gene-involving [[homeostatic]] mechanisms (anapoiesis)'' (iii) &rarr; ''final cell function'' (iv)
    
     evolution (i) &rarr; gene expression (ii) &rarr; non gene-involving homeostatic mechanisms (anapoiesis) (iii) &rarr; final cell function (iv)
 
     evolution (i) &rarr; gene expression (ii) &rarr; non gene-involving homeostatic mechanisms (anapoiesis) (iii) &rarr; final cell function (iv)
   −
进化(i) ; 基因表达(ii) ; 非基因参与的稳态机制(anapoiesis) ; (iii) ; 最终细胞功能(iv)
+
进化(i)基因表达(ii)和 rarr; 非基因参与的稳态机制(anapoiesis)(iii)和 rarr; 最终细胞功能(iv)
         −
As the hierarchy evolves towards higher levels of organization, the speed of adaptation increases. Evolution is the slowest; the final cell function is the fastest. Ultimately, practopoiesis challenges current neuroscience doctrine by asserting that mental operations primarily occur at the homeostatic, anapoietic level (iii) &mdash; i.e., that minds and thought emerge from fast homeostatic mechanisms poietically controlling the cell function. This contrasts the widespread belief that thinking is synonymous with neural activity (i.e., with the 'final cell function' at level iv).  
+
As the hierarchy evolves towards higher levels of organization, the speed of adaptation increases. Evolution is the slowest; the final cell function is the fastest. Ultimately, practopoiesis challenges current neuroscience doctrine by asserting that mental operations primarily occur at the homeostatic, anapoietic level (iii) &mdash; i.e., that minds and thought emerge from fast homeostatic mechanisms poietically controlling the cell function. This contrasts the widespread belief that [[thinking]] is synonymous with [[neural activity]] (i.e., with the 'final cell function' at level iv).  
    
As the hierarchy evolves towards higher levels of organization, the speed of adaptation increases. Evolution is the slowest; the final cell function is the fastest. Ultimately, practopoiesis challenges current neuroscience doctrine by asserting that mental operations primarily occur at the homeostatic, anapoietic level (iii) &mdash; i.e., that minds and thought emerge from fast homeostatic mechanisms poietically controlling the cell function. This contrasts the widespread belief that thinking is synonymous with neural activity (i.e., with the 'final cell function' at level iv).  
 
As the hierarchy evolves towards higher levels of organization, the speed of adaptation increases. Evolution is the slowest; the final cell function is the fastest. Ultimately, practopoiesis challenges current neuroscience doctrine by asserting that mental operations primarily occur at the homeostatic, anapoietic level (iii) &mdash; i.e., that minds and thought emerge from fast homeostatic mechanisms poietically controlling the cell function. This contrasts the widespread belief that thinking is synonymous with neural activity (i.e., with the 'final cell function' at level iv).  
第137行: 第137行:  
Each slower level contains knowledge that is more general than the faster level; for example, genes contain more general knowledge than anapoietic mechanisms, which in turn contain more general knowledge than cell functions. This hierarchy of knowledge enables the anapoietic level to directly activate concepts, which are the most fundamental ingredient for the emergence of the mind.
 
Each slower level contains knowledge that is more general than the faster level; for example, genes contain more general knowledge than anapoietic mechanisms, which in turn contain more general knowledge than cell functions. This hierarchy of knowledge enables the anapoietic level to directly activate concepts, which are the most fundamental ingredient for the emergence of the mind.
   −
每个较慢的层次包含的知识比较快的层次包含的知识更普遍; 例如,基因包含的一般知识比无生殖机制多,而无生殖机制又比细胞功能包含更多的一般知识。这种知识的层次结构使得无生命层次能够直接激活概念,而这些概念是头脑出现的最基本的组成部分。
+
每一个较慢的层次包含的知识比较快的层次包含的知识更普遍; 例如,基因包含的一般知识比无生殖机制多,而无生殖机制又比细胞功能包含更多的一般知识。这种知识的层次结构使得无生命层次能够直接激活概念,而这些概念是头脑出现的最基本要素。
      第185行: 第185行:  
   | last = Martin H. | first = Jose Antonio. | authorlink = Jose Antonio Martin H.
 
   | last = Martin H. | first = Jose Antonio. | authorlink = Jose Antonio Martin H.
   −
马丁 · h · 约瑟 · 安东尼奥。作者: 何塞 · 安东尼奥 · 马丁。
+
最后 = Martin h | first = Jose Antonio。| authorlink = Jose Antonio Martin h.
    
   | author2 = [[Javier de Lope]]; [[Darío Maravall]]
 
   | author2 = [[Javier de Lope]]; [[Darío Maravall]]
第203行: 第203行:  
   | journal = Natural Computing
 
   | journal = Natural Computing
   −
自然计算杂志
+
自然计算
    
   | volume = 8 | issue = 4
 
   | volume = 8 | issue = 4
第209行: 第209行:  
   | volume = 8 | issue = 4
 
   | volume = 8 | issue = 4
   −
第八卷,第四期
+
8 | issue = 4
    
   | pages = 757–775
 
   | pages = 757–775
第215行: 第215行:  
   | pages = 757–775
 
   | pages = 757–775
   −
第757-775页
+
| 页数 = 757-775
    
   | date = 2009
 
   | date = 2009
第227行: 第227行:  
   | doi  =  10.1007/s11047-008-9096-6  
 
   | doi  =  10.1007/s11047-008-9096-6  
   −
10.1007 / s11047-008-9096-6
+
10.1007/s11047-008-9096-6
    
}}
 
}}
1,564

个编辑

导航菜单