更改

跳到导航 跳到搜索
删除3字节 、 2020年10月27日 (二) 21:48
无编辑摘要
第23行: 第23行:  
The Hausdorff dimension, more specifically, is a further dimensional number associated with a given set, where the distances between all members of that set are defined. Such a set is termed a metric space. The dimension is drawn from the extended real numbers, <math>\overline{\mathbb{R}}</math>, as opposed to the more intuitive notion of dimension, which is not associated to general metric spaces, and only takes values in the non-negative integers.
 
The Hausdorff dimension, more specifically, is a further dimensional number associated with a given set, where the distances between all members of that set are defined. Such a set is termed a metric space. The dimension is drawn from the extended real numbers, <math>\overline{\mathbb{R}}</math>, as opposed to the more intuitive notion of dimension, which is not associated to general metric spaces, and only takes values in the non-negative integers.
   −
更具体地说,豪斯多夫维数是一个与给定集合相关联的更进一步的维数,其中定义了该集合所有成员之间的距离。这样的集合称为度量空间。维数是从扩展的实数,<math>\overline{\mathbb{R}}</math>,而不是更直观的维数概念(它不与一般的度量空间相关联,只接受非负整数的值)。
+
更具体地说,豪斯多夫维数是一个与给定集合相关联的更进一步的维数,其中定义了该集合所有成员之间的距离。这样的集合称为度量空间。维数是从扩展的实数,<math>\overline{\mathbb{R}}</math>,而不是更直观的维数概念(它不与一般的度量空间相关联,只取非负整数的值)。
     
66

个编辑

导航菜单