更改

跳到导航 跳到搜索
删除586字节 、 2020年10月27日 (二) 22:45
第1行: 第1行: −
此词条暂由彩云小译翻译,翻译字数共303,未经人工整理和审校,带来阅读不便,请见谅。
+
此词条暂由彩云小译翻译,翻译字数共319,未经人工整理和审校,带来阅读不便,请见谅。
    
{{Short description|Model of quantum computation}}
 
{{Short description|Model of quantum computation}}
第21行: 第21行:  
<!-- Relation to classical computation -->
 
<!-- Relation to classical computation -->
   −
That is, a classical Turing machine is described by  a 7-tuple <math>M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle</math>.
+
<!-- Relation to classical computation -->
   −
也就是说,一个经典的图灵机是由一个7元组来描述的。
+
< ! ! -- 与经典计算的关系 -- >
    
Quantum Turing machines can be related to classical and probabilistic Turing machines in a framework based on [[Stochastic matrix|transition matrices]]. That is, a matrix can be specified whose product with the matrix representing a classical or probabilistic machine provides the quantum probability matrix representing the quantum machine. This was shown by [[Lance Fortnow]].<ref name="transition">{{cite journal|author=Fortnow|first=Lance|author-link=Lance Fortnow|year=2003|title=One Complexity Theorist's View of Quantum Computing|url=|journal=Theoretical Computer Science|volume=292|issue=3|pages=597–610|doi=10.1016/S0304-3975(01)00377-2|via=|arxiv=quant-ph/0003035}}</ref>
 
Quantum Turing machines can be related to classical and probabilistic Turing machines in a framework based on [[Stochastic matrix|transition matrices]]. That is, a matrix can be specified whose product with the matrix representing a classical or probabilistic machine provides the quantum probability matrix representing the quantum machine. This was shown by [[Lance Fortnow]].<ref name="transition">{{cite journal|author=Fortnow|first=Lance|author-link=Lance Fortnow|year=2003|title=One Complexity Theorist's View of Quantum Computing|url=|journal=Theoretical Computer Science|volume=292|issue=3|pages=597–610|doi=10.1016/S0304-3975(01)00377-2|via=|arxiv=quant-ph/0003035}}</ref>
    +
Quantum Turing machines can be related to classical and probabilistic Turing machines in a framework based on transition matrices. That is, a matrix can be specified whose product with the matrix representing a classical or probabilistic machine provides the quantum probability matrix representing the quantum machine. This was shown by Lance Fortnow.
    +
在基于转移矩阵的框架下,量子图灵机可以与经典图灵机和概率图灵机相关联。也就是说,可以指定一个矩阵,该矩阵与表示经典或概率机器的矩阵的乘积提供了表示量子机器的量子概率矩阵。这是由兰斯 · 福特诺展示的。
   −
For a three-tape quantum Turing machine (one tape holding the input, a second tape holding intermediate calculation results, and a third tape holding output):
     −
对于三带量子图灵机(一带保存输入,第二带保存中间计算结果,第三带保存输出) :
      
== Informal sketch ==
 
== Informal sketch ==
第38行: 第38行:     
A way of understanding the quantum Turing machine (QTM) is that it generalizes the classical [[Turing machine]] (TM) in the same way that the [[quantum finite automaton]] (QFA) generalizes the [[deterministic finite automaton]] (DFA).  In essence, the internal states of a classical TM are replaced by [[pure state|pure]] or [[mixed quantum state|mixed states]] in a Hilbert space; the transition function is replaced by a collection of [[unitary matrix|unitary matrices]] that map the Hilbert space to itself.<ref name="Deutsch1985" />
 
A way of understanding the quantum Turing machine (QTM) is that it generalizes the classical [[Turing machine]] (TM) in the same way that the [[quantum finite automaton]] (QFA) generalizes the [[deterministic finite automaton]] (DFA).  In essence, the internal states of a classical TM are replaced by [[pure state|pure]] or [[mixed quantum state|mixed states]] in a Hilbert space; the transition function is replaced by a collection of [[unitary matrix|unitary matrices]] that map the Hilbert space to itself.<ref name="Deutsch1985" />
 +
 +
A way of understanding the quantum Turing machine (QTM) is that it generalizes the classical Turing machine (TM) in the same way that the quantum finite automaton (QFA) generalizes the deterministic finite automaton (DFA).  In essence, the internal states of a classical TM are replaced by pure or mixed states in a Hilbert space; the transition function is replaced by a collection of unitary matrices that map the Hilbert space to itself. that first described a quantum mechanical model of Turing machines. A 1985 article written by Oxford University physicist David Deutsch further developed the idea of quantum computers by suggesting quantum gates could function in a similar fashion to traditional digital computing binary logic gates.
 +
 +
理解量子图灵机的一个方法是它推广了经典的图灵机,就像量子有限自动机推广了确定有限状态自动机机一样。实质上,经典 TM 的内部状态被希尔伯特空间中的纯态或混合态所取代,转移函数被映射 Hilbert 空间到自身的一组酉矩阵所取代。首次描述了图灵机的量子力学模型。牛津大学物理学家大卫 · 多伊奇在1985年的一篇文章中进一步发展了量子计算机的概念,他提出量子门可以以类似于传统数字计算二进制逻辑门的方式运行。
          
That is, a classical Turing machine is described by  a 7-[[tuple]] <math>M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle</math>.
 
That is, a classical Turing machine is described by  a 7-[[tuple]] <math>M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle</math>.
 +
 +
Iriyama, Ohya, and Volovich have developed a model of a linear quantum Turing machine (LQTM).  This is a generalization of a classical QTM that has mixed states and that allows irreversible transition functions.  These allow the representation of quantum measurements without classical outcomes.
 +
 +
Iriyama、 Ohya 和 Volovich 开发了一个线性量子图灵机模型(LQTM)。这是一个具有混合状态并允许不可逆转换函数的经典 QTM 的推广。这使得量子测量可以在没有经典结果的情况下进行表示。
          
For a three-tape quantum Turing machine (one tape holding the input, a second tape holding intermediate calculation results, and a third tape holding output):
 
For a three-tape quantum Turing machine (one tape holding the input, a second tape holding intermediate calculation results, and a third tape holding output):
 +
 +
A quantum Turing machine with postselection was defined by Scott Aaronson, who showed that the class of polynomial time on such a machine (PostBQP) is equal to the classical complexity class PP.
 +
 +
一个具有后选择的量子图灵机由 Scott Aaronson 定义,他证明了这样一个机器上的多项式时间类(PostBQP)等于经典的复杂性类 PP。
    
* The set of states <math>Q</math> is replaced by a [[Hilbert space]].
 
* The set of states <math>Q</math> is replaced by a [[Hilbert space]].
    
* The tape alphabet symbols <math>\Gamma</math> are likewise replaced by a Hilbert space (usually a different Hilbert space than the set of states).
 
* The tape alphabet symbols <math>\Gamma</math> are likewise replaced by a Hilbert space (usually a different Hilbert space than the set of states).
  −
The above is merely a sketch of a quantum Turing machine, rather than its formal definition, as it leaves vague several important details: for example, how often a measurement is performed; see for example, the difference between a measure-once and a measure-many QFA.  This question of measurement affects the way in which writes to the output tape are defined.
  −
  −
以上只是一个量子图灵机的概述,而不是它的正式定义,因为它留下了一些模糊的重要细节: 例如,多久进行一次测量; 例如,区别一次测量和多次测量 QFA。这个度量问题影响定义写入输出磁带的方式。
      
* The blank symbol <math>b \in \Gamma</math> corresponds to the zero-vector.
 
* The blank symbol <math>b \in \Gamma</math> corresponds to the zero-vector.
第60行: 第68行:     
* The [[State transition system|transition function]] <math>\delta : \Sigma \times Q  \otimes \Gamma \rightarrow \Sigma \times Q \otimes \Gamma \times \{L,R\}</math> is a generalization of a [[transition monoid]], and is understood to be a collection of [[unitary matrix|unitary matrices]] that are [[automorphism]]s of the Hilbert space <math>Q</math>.
 
* The [[State transition system|transition function]] <math>\delta : \Sigma \times Q  \otimes \Gamma \rightarrow \Sigma \times Q \otimes \Gamma \times \{L,R\}</math> is a generalization of a [[transition monoid]], and is understood to be a collection of [[unitary matrix|unitary matrices]] that are [[automorphism]]s of the Hilbert space <math>Q</math>.
  −
In 1980 and 1982, physicist Paul Benioff published papers that first described a quantum mechanical model of Turing machines. A 1985 article written by Oxford University physicist David Deutsch further developed the idea of quantum computers by suggesting quantum gates could function in a similar fashion to traditional digital computing binary logic gates.
  −
  −
1980年和1982年,物理学家保罗 · 贝尼奥夫发表论文,首次描述了图灵机的量子力学模型。牛津大学物理学家大卫 · 多伊奇在1985年的一篇文章中进一步发展了量子计算机的概念,他提出量子门可以以类似于传统数字计算二进制逻辑门的方式运行。
      
* The initial state <math>q_0 \in Q</math> may be either a [[mixed quantum state|mixed state]] or a [[pure state]].
 
* The initial state <math>q_0 \in Q</math> may be either a [[mixed quantum state|mixed state]] or a [[pure state]].
    
* The set <math>F</math> of ''final'' or ''accepting states'' is a subspace of the Hilbert space <math>Q</math>.
 
* The set <math>F</math> of ''final'' or ''accepting states'' is a subspace of the Hilbert space <math>Q</math>.
  −
Iriyama, Ohya, and Volovich have developed a model of a linear quantum Turing machine (LQTM).  This is a generalization of a classical QTM that has mixed states and that allows irreversible transition functions.  These allow the representation of quantum measurements without classical outcomes.
  −
  −
Iriyama、 Ohya 和 Volovich 开发了一个线性量子图灵机模型(LQTM)。这是一个具有混合状态并允许不可逆转换函数的经典 QTM 的推广。这使得量子测量可以在没有经典结果的情况下进行表示。
            
The above is merely a sketch of a quantum Turing machine, rather than its formal definition, as it leaves vague several important details: for example, how often a [[quantum measurement|measurement]] is performed; see for example, the difference between a measure-once and a measure-many QFA.  This question of measurement affects the way in which writes to the output tape are defined.
 
The above is merely a sketch of a quantum Turing machine, rather than its formal definition, as it leaves vague several important details: for example, how often a [[quantum measurement|measurement]] is performed; see for example, the difference between a measure-once and a measure-many QFA.  This question of measurement affects the way in which writes to the output tape are defined.
  −
A quantum Turing machine with postselection was defined by Scott Aaronson, who showed that the class of polynomial time on such a machine (PostBQP) is equal to the classical complexity class PP.
  −
  −
一个具有后选择的量子图灵机由 Scott Aaronson 定义,他证明了这样一个机器上的多项式时间类(PostBQP)等于经典的复杂性类 PP。
        第98行: 第94行:     
== See also ==
 
== See also ==
  −
*[[Quantum simulator#Solving physics problems|Quantum simulator § Solving physics problems]]
  −
  −
  −
  −
== References ==
  −
  −
{{reflist}}
  −
  −
  −
  −
== Further reading ==
  −
  −
* {{cite arXiv|eprint=1808.01701|title=Revisiting the simulation of quantum Turing machines by quantum circuits|last1=Molina|first1=Abel|last2=Watrous|first2=John|year=2018|class=cs.CC}}
  −
  −
* {{cite arxiv|eprint=quant-ph/0405191|title=Generalized Quantum Turing Machine and its Application to the SAT Chaos Algorithm|last1=Iriyama|first1=Satoshi|last2=Ohya|first2=Masanori|last3=Volovich|first3=Igor|year=2004}}
  −
  −
* {{cite journal |jstor=2397601|title=Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer|journal=Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences|volume=400|issue=1818|pages=97–117|last1=Deutsch|first1=D.|year=1985|bibcode=1985RSPSA.400...97D|doi=10.1098/rspa.1985.0070|citeseerx=10.1.1.41.2382}}
      
Category:Turing machine
 
Category:Turing machine
第121行: 第99行:  
类别: 图灵机
 
类别: 图灵机
   −
 
+
*[[Quantum simulator#Solving physics problems|Quantum simulator § Solving physics problems]]
    
Category:Quantum complexity theory
 
Category:Quantum complexity theory
1,568

个编辑

导航菜单