第92行: |
第92行: |
| == Properties 属性 == | | == Properties 属性 == |
| === Conditional entropy equals zero 条件熵等于零 === | | === Conditional entropy equals zero 条件熵等于零 === |
− | <math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>. | + | <math>H(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>. |
| | | |
| 当且仅当<math>Y</math>的值完全由<math>X</math>的值确定时,才为<math>H(Y|X)=0</math>。 | | 当且仅当<math>Y</math>的值完全由<math>X</math>的值确定时,才为<math>H(Y|X)=0</math>。 |
第99行: |
第99行: |
| | | |
| === Conditional entropy of independent random variables 独立随机变量的条件熵 === | | === Conditional entropy of independent random variables 独立随机变量的条件熵 === |
− | Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]]. | + | Conversely, <math>H(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]]. |
| | | |
| 相反,当且仅当<math>Y</math>和<math>X</math>是独立随机变量时,则为<math>H(Y|X) =H(Y)</math>。 | | 相反,当且仅当<math>Y</math>和<math>X</math>是独立随机变量时,则为<math>H(Y|X) =H(Y)</math>。 |
第141行: |
第141行: |
| 除了使用加法而不是乘法之外,它具有与概率论中的链式法则类似的形式。 | | 除了使用加法而不是乘法之外,它具有与概率论中的链式法则类似的形式。 |
| | | |
− | ===Bayes' rule=== | + | === Bayes' rule 贝叶斯法则 === |
| [[Bayes' rule]] for conditional entropy states | | [[Bayes' rule]] for conditional entropy states |
| :<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math> | | :<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math> |
第151行: |
第151行: |
| :<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math> | | :<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math> |
| | | |
− | ===Other properties=== | + | === Other properties 其他性质 === |
| For any <math>X</math> and <math>Y</math>: | | For any <math>X</math> and <math>Y</math>: |
| :<math display="block">\begin{align} | | :<math display="block">\begin{align} |
− | \Eta(Y|X) &\le \Eta(Y) \, \\ | + | H(Y|X) &\le H(Y) \, \\ |
− | \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\ | + | H(X,Y) &= H(X|Y) + H(Y|X) + \operatorname{I}(X;Y),\qquad \\ |
− | \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\ | + | H(X,Y) &= H(X) + H(Y) - \operatorname{I}(X;Y),\, \\ |
− | \operatorname{I}(X;Y) &\le \Eta(X),\, | + | \operatorname{I}(X;Y) &\le H(X),\, |
| \end{align}</math> | | \end{align}</math> |
| | | |
第164行: |
第164行: |
| For independent <math>X</math> and <math>Y</math>: | | For independent <math>X</math> and <math>Y</math>: |
| | | |
− | :<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math> | + | :<math>H(Y|X) = H(Y) </math> and <math>H(X|Y) = H(X) \, </math> |
| | | |
− | Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>. | + | Although the specific-conditional entropy <math>H(X|Y=y)</math> can be either less or greater than <math>H(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>H(X|Y)</math> can never exceed <math>H(X)</math>. |
| | | |
| == Conditional differential entropy == | | == Conditional differential entropy == |