更改

跳到导航 跳到搜索
添加23字节 、 2020年10月28日 (三) 17:40
第166行: 第166行:  
Although the specific-conditional entropy <math>H(X|Y=y)</math> can be either less or greater than <math>H(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>H(X|Y)</math> can never exceed <math>H(X)</math>.
 
Although the specific-conditional entropy <math>H(X|Y=y)</math> can be either less or greater than <math>H(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>H(X|Y)</math> can never exceed <math>H(X)</math>.
   −
== Conditional differential entropy ==
+
== Conditional differential entropy 条件微分熵 ==
=== Definition ===
+
=== Definition 定义 ===
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
  
961

个编辑

导航菜单