第45行: |
第45行: |
| <br> | | <br> |
| | | |
− | ==Algorithm for finding pseudo-peripheral vertices 寻找伪周边的算法== | + | ==寻找伪周边的算法 Algorithm for finding pseudo-peripheral vertices == |
| | | |
− | Often peripheral [[sparse matrix]] algorithms need a starting vertex with a high eccentricity. A peripheral vertex would be perfect, but is often hard to calculate. In most circumstances a pseudo-peripheral vertex can be used. A pseudo-peripheral vertex can easily be found with the following algorithm:
| + | 通常,外围[[稀疏矩阵 sparse matrix]]算法需要具有高离心率的起始点。外围顶点会是首选,但往往难以计算。在大多数情况下,可以使用伪周边顶点。通过以下算法,能轻松找到伪周边顶点: |
| | | |
− | Often peripheral sparse matrix algorithms need a starting vertex with a high eccentricity. A peripheral vertex would be perfect, but is often hard to calculate. In most circumstances a pseudo-peripheral vertex can be used. A pseudo-peripheral vertex can easily be found with the following algorithm:
| + | # 选择顶点 <math>u</math>。 |
− | | + | # 在所有尽可能远离<math>u</math>的顶点中,让<math>v</math>是一个最小度的顶点。 |
− | 通常周边稀疏矩阵算法需要一个高离心率的起始点。一个外围的顶点会是首选,但往往难以计算。在大多数情况下,可以使用伪周边顶点。通过以下算法,可以很容易地找到伪周边顶点:
| + | # 如果<math>\epsilon(v) > \epsilon(u)</math>,那么令 <math>u=v</math> 并重复步骤2,否则 <math>u</math>是一个伪周边顶点。 |
− | | |
− | | |
− | | |
− | # Choose a vertex <math>u</math>. | |
− | | |
− | Choose a vertex <math>u</math>.
| |
− | | |
− | 选择顶点<math>u</math>。 | |
− | | |
− | # Among all the vertices that are as far from <math>u</math> as possible, let <math>v</math> be one with minimal [[degree (graph theory)|degree]]. | |
− | | |
− | Among all the vertices that are as far from <math>u</math> as possible, let <math>v</math> be one with minimal degree.
| |
− | | |
− | 在所有尽可能远离<math>u</math>的顶点中,令<math>v</math>是一个最小度的顶点。 | |
− | | |
− | # If <math>\epsilon(v) > \epsilon(u)</math> then set <math>u=v</math> and repeat with step 2, else <math>u</math> is a pseudo-peripheral vertex. | |
− | | |
− | If <math>\epsilon(v) > \epsilon(u)</math> then set <math>u=v</math> and repeat with step 2, else <math>u</math> is a pseudo-peripheral vertex.
| |
− | | |
− | 如果<math>\epsilon(v) > \epsilon(u)</math>那么令 <math>u=v</math>并重复步骤2,否则 <math>u</math>是一个伪周边顶点。 | |
| | | |
| ==See also 另请参见== | | ==See also 另请参见== |