The parallelization of graph problems faces significant challenges: Data-driven computations, unstructured problems, poor locality and high data access to computation ratio. The graph representation used for parallel architectures plays a significant role in facing those challenges. Poorly chosen representations may unnecessarily drive up the communication cost of the algorithm, which will decrease its scalability. In the following, shared and distributed memory architectures are considered. | The parallelization of graph problems faces significant challenges: Data-driven computations, unstructured problems, poor locality and high data access to computation ratio. The graph representation used for parallel architectures plays a significant role in facing those challenges. Poorly chosen representations may unnecessarily drive up the communication cost of the algorithm, which will decrease its scalability. In the following, shared and distributed memory architectures are considered. |