第643行: |
第643行: |
| | | |
| * [[Just another Gibbs sampler]] (JAGS) – Open-source alternative to WinBUGS. Uses Gibbs sampling. | | * [[Just another Gibbs sampler]] (JAGS) – Open-source alternative to WinBUGS. Uses Gibbs sampling. |
− | * [[Just another Gibbs sampler]] (JAGS) WinBUGS的开源替代品。使用吉布斯抽样法 | + | * [[Just another Gibbs sampler]] (JAGS) WinBUGS的开源替代品。使用了吉布斯采样。 |
| * [[OpenBUGS]] – Open-source development of WinBUGS. | | * [[OpenBUGS]] – Open-source development of WinBUGS. |
− | * [[OpenBUGS]] –WinBUGS的开源开发。 | + | * [[OpenBUGS]] –WinBUGS的开源版本。 |
| * [[SPSS Modeler]] – Commercial software that includes an implementation for Bayesian networks. | | * [[SPSS Modeler]] – Commercial software that includes an implementation for Bayesian networks. |
− | * [[SPSS Modeler]] –包括贝叶斯网络实现的商业软件。 | + | * [[SPSS Modeler]] –一个包括了贝叶斯网络实现的商业软件。 |
| * [[Stan (software)]] – Stan is an open-source package for obtaining Bayesian inference using the No-U-Turn sampler (NUTS),<ref>{{Cite document |arxiv = 1111.4246|bibcode = 2011arXiv1111.4246H|last1 = Hoffman|first1 = Matthew D.|last2 = Gelman|first2 = Andrew|title = The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo|year = 2011}}</ref> a variant of Hamiltonian Monte Carlo. | | * [[Stan (software)]] – Stan is an open-source package for obtaining Bayesian inference using the No-U-Turn sampler (NUTS),<ref>{{Cite document |arxiv = 1111.4246|bibcode = 2011arXiv1111.4246H|last1 = Hoffman|first1 = Matthew D.|last2 = Gelman|first2 = Andrew|title = The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo|year = 2011}}</ref> a variant of Hamiltonian Monte Carlo. |
− | * [[Stan (software)]] – stan是一个开源软件包,用于使用不掉头取样器(NUTS),<ref>{{Cite document |arxiv = 1111.4246|bibcode = 2011arXiv1111.4246H|last1 = Hoffman|first1 = Matthew D.|last2 = Gelman|first2 = Andrew|title = The No-U-Turn Sampler:在哈密顿蒙特卡罗中自适应设置路径长度|年=2011}}的一个变体。 | + | * [[Stan (software)]] – stan是一个开源软件包,用于使用No-U-Turn取样器(NUTS),<ref>{{Cite document |arxiv = 1111.4246|bibcode = 2011arXiv1111.4246H|last1 = Hoffman|first1 = Matthew D.|last2 = Gelman|first2 = Andrew|title = The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo|year = 2011}}</ref> 是汉密尔顿蒙特卡洛方法的一个变体。 |
| * [[PyMC3]] – A Python library implementing an embedded domain specific language to represent bayesian networks, and a variety of samplers (including NUTS) | | * [[PyMC3]] – A Python library implementing an embedded domain specific language to represent bayesian networks, and a variety of samplers (including NUTS) |
− | * [[PyMC3]] – 一个python库,它实现了一个嵌入式领域特定语言来表示贝叶斯网络和各种采样器(包括坚果NUTS)。 | + | * [[PyMC3]] – 一个python库,它实现了一个能用来表示贝叶斯网络的微型语言,以及各种采样器(包括No-U-Turn取样器)。 |
| * [[WinBUGS]] – One of the first computational implementations of MCMC samplers. No longer maintained. | | * [[WinBUGS]] – One of the first computational implementations of MCMC samplers. No longer maintained. |
− | * [[WinBUGS]] –MCMC采样器的第一个计算实现之一。不再支持。 | + | * [[WinBUGS]] –马尔可夫链蒙特卡罗采样器最早的实现之一,但这个软件已经不再维护。 |
| | | |
| | | |
| ==History历史== | | ==History历史== |
| | | |
− | The term Bayesian network was coined by [[Judea Pearl]] in 1985 to emphasize:<ref>{{cite conference |last=Pearl |first=J. | name-list-format = vanc |authorlink=Judea Pearl |year=1985 |title=Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning |conference=Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, CA | + | The term Bayesian network was coined by [[Judea Pearl]] in 1985 to emphasize: |
− | | |
− | The term Bayesian network was coined by Judea Pearl in 1985 to emphasize:<ref>{{cite conference |last=Pearl |first=J. | name-list-format = vanc |authorlink=Judea Pearl |year=1985 |title=Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning |conference=Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, CA
| |
− | | |
− | 1985年,朱迪亚 · 珀尔创造了'''<font color="#ff8000"> 贝叶斯网络Bayesian network</font>'''一词来强调: ref { cite conference | last Pearl | first j。贝叶斯网络: 证据推理的自激记忆模型 | 第七届认知科学学会会议论文集,加州大学欧文分校
| |
− | | |
− | |pages=329–334 |url=http://ftp.cs.ucla.edu/tech-report/198_-reports/850017.pdf|access-date=2009-05-01 |format=UCLA Technical Report CSD-850017}}</ref>
| |
− | | |
− | |pages=329–334 |url=http://ftp.cs.ucla.edu/tech-report/198_-reports/850017.pdf|access-date=2009-05-01 |format=UCLA Technical Report CSD-850017}}</ref>
| |
− | | |
− | | 第329-334页 | 网址 / http://ftp.cs.UCLA.edu/tech-Report/198_-reports/850017.pdf|access-date=2009-05-01 / 格式 / UCLA 技术报告 / CSD-850017} / ref
| |
− | | |
| | | |
| + | 1985年,朱迪亚 · 珀尔创造了'''<font color="#ff8000">贝叶斯网络</font>'''一词来强调: |
| | | |
| *the often subjective nature of the input information | | *the often subjective nature of the input information |
第677行: |
第667行: |
| *依赖贝叶斯条件作为信息更新的基础 | | *依赖贝叶斯条件作为信息更新的基础 |
| *the distinction between causal and evidential modes of reasoning<ref>{{Cite journal | last = Bayes | first = T. | name-list-format = vanc | authorlink = Thomas Bayes | year = 1763 | title = An Essay towards solving a Problem in the Doctrine of Chances | journal = [[Philosophical Transactions of the Royal Society]] | volume = 53 | pages = 370–418 | doi = 10.1098/rstl.1763.0053 | last2 = Price | title-link = An Essay towards solving a Problem in the Doctrine of Chances | doi-access = free }}</ref> | | *the distinction between causal and evidential modes of reasoning<ref>{{Cite journal | last = Bayes | first = T. | name-list-format = vanc | authorlink = Thomas Bayes | year = 1763 | title = An Essay towards solving a Problem in the Doctrine of Chances | journal = [[Philosophical Transactions of the Royal Society]] | volume = 53 | pages = 370–418 | doi = 10.1098/rstl.1763.0053 | last2 = Price | title-link = An Essay towards solving a Problem in the Doctrine of Chances | doi-access = free }}</ref> |
− | *因果推理和证据推理模式的区别<ref>{{Cite journal | last = Bayes | first = T. | name-list-format = vanc | authorlink = Thomas Bayes | year = 1763 | title = An Essay towards solving a Problem in the Doctrine of Chances | journal = [[Philosophical Transactions of the Royal Society]] | volume = 53 | pages = 370–418 | doi = 10.1098/rstl.1763.0053 | last2 = Price | title-link = An Essay towards solving a Problem in the Doctrine of Chances | doi-access = free }}</ref> | + | *因果推理和相关推理是有区别的 |
− | | |
| | | |
| In the late 1980s Pearl's ''Probabilistic Reasoning in Intelligent Systems''<ref>{{cite book | vauthors = Pearl J |title=Probabilistic Reasoning in Intelligent Systems |publisher=[[Morgan Kaufmann]] |location=San Francisco CA |isbn=978-1558604797 |pages=1988 |url={{google books |plainurl=y |id=AvNID7LyMusC}}|date=1988-09-15 }}</ref> and [[Richard E. Neapolitan|Neapolitan]]'s ''Probabilistic Reasoning in Expert Systems''<ref>{{cite book |first=Richard E. |last=Neapolitan | name-list-format = vanc |title=Probabilistic reasoning in expert systems: theory and algorithms |url={{google books |plainurl=y |id=7X5KLwEACAAJ}} |year=1989 |publisher=Wiley |isbn=978-0-471-61840-9}}</ref> summarized their properties and established them as a field of study. | | In the late 1980s Pearl's ''Probabilistic Reasoning in Intelligent Systems''<ref>{{cite book | vauthors = Pearl J |title=Probabilistic Reasoning in Intelligent Systems |publisher=[[Morgan Kaufmann]] |location=San Francisco CA |isbn=978-1558604797 |pages=1988 |url={{google books |plainurl=y |id=AvNID7LyMusC}}|date=1988-09-15 }}</ref> and [[Richard E. Neapolitan|Neapolitan]]'s ''Probabilistic Reasoning in Expert Systems''<ref>{{cite book |first=Richard E. |last=Neapolitan | name-list-format = vanc |title=Probabilistic reasoning in expert systems: theory and algorithms |url={{google books |plainurl=y |id=7X5KLwEACAAJ}} |year=1989 |publisher=Wiley |isbn=978-0-471-61840-9}}</ref> summarized their properties and established them as a field of study. |
第684行: |
第673行: |
| In the late 1980s Pearl's Probabilistic Reasoning in Intelligent Systems and Neapolitan's Probabilistic Reasoning in Expert Systems summarized their properties and established them as a field of study. | | In the late 1980s Pearl's Probabilistic Reasoning in Intelligent Systems and Neapolitan's Probabilistic Reasoning in Expert Systems summarized their properties and established them as a field of study. |
| | | |
− | 20世纪80年代后期,皮尔的《智能系统中的概率推理》和那不勒斯的《专家系统中的概率推理》总结了它们的性质,并将它们确立为一个研究领域。
| + | 20世纪80年代后期,珀尔的《智能系统中的概率推理》和那不勒斯的《专家系统中的概率推理》总结了它们的性质,并将它们确立为一个研究领域。 |
| | | |
| == See also又及 == | | == See also又及 == |