第32行: |
第32行: |
| Emergence of hubs can be explained by the difference between scale-free networks and random networks. Scale-free networks (Barabási–Albert model) are different from random networks (Erdős–Rényi model) in two aspects: (a) growth, (b) preferential attachment.<ref name=RMP>{{Cite journal | | Emergence of hubs can be explained by the difference between scale-free networks and random networks. Scale-free networks (Barabási–Albert model) are different from random networks (Erdős–Rényi model) in two aspects: (a) growth, (b) preferential attachment.<ref name=RMP>{{Cite journal |
| | | |
− | 枢纽的成因可以用无标度网络和随机网络的区别来解释。'''<font color="#ff8000">无标度网络 Scale-Free Networks</font>'''(Barabási-Albert模型)与'''<font color="#ff8000">随机网络 Random Networks</font>'''(Erdős–Rényi model)的区别主要存在于如下两个方面: (a)'''<font color="#ff8000">增长 Growth</font>''',(b)'''<font color="#ff8000">优先链接 Preferential Attachment</font>'''。{ Cite journal | + | 枢纽的成因可以用无标度网络和随机网络的区别来解释。'''<font color="#ff8000">无标度网络 Scale-Free Networks</font>'''(Barabási-Albert模型)与'''<font color="#ff8000">随机网络 Random Networks</font>'''(Erdős–Rényi model)的区别主要存在于如下两个方面: (a)'''<font color="#ff8000">增长 Growth</font>''',(b)'''<font color="#ff8000">优先链接 Preferential Attachment</font>'''。 |
− | | |
− | | url = http://www.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/StatisticalMechanics_Rev%20of%20Modern%20Physics%2074,%2047%20(2002).pdf
| |
− | | |
− | | url = http://www.nd.edu/~networks/Publication%20Categories/03%20Journal%20Articles/Physics/StatisticalMechanics_Rev%20of%20Modern%20Physics%2074,%2047%20(2002).pdf
| |
− | | |
− | Http://www.nd.edu/~networks/publication%20categories/03%20journal%20articles/physics/statisticalmechanics_rev%20of%20modern%20physics%2074,%2047%20(2002).pdf
| |
− | | |
− | | authorlink1 = Réka Albert | first1 = Réka | last1 = Albert
| |
− | | |
− | | authorlink1 = Réka Albert | first1 = Réka | last1 = Albert
| |
− | | |
− | 1 = r é ka Albert | first1 = r é ka | last1 = Albert
| |
− | | |
− | | authorlink2 = Albert-László Barabási | first2 = Albert-László | last2 = Barabási
| |
− | | |
− | | authorlink2 = Albert-László Barabási | first2 = Albert-László | last2 = Barabási
| |
− | | |
− | 2 = albert-lászló Barabási | first2 = albert-lászló | last2 = Barabási
| |
− | | |
− | | title = Statistical mechanics of complex networks
| |
− | | |
− | | title = Statistical mechanics of complex networks
| |
− | | |
− | | title = 复杂网络的统计力学
| |
− | | |
− | | journal = [[Reviews of Modern Physics]]
| |
− | | |
− | | journal = Reviews of Modern Physics
| |
− | | |
− | | 杂志 = 现代物理学评论
| |
− | | |
− | | volume = 74
| |
− | | |
− | | volume = 74
| |
− | | |
− | 74
| |
− | | |
− | | pages = 47–97
| |
− | | |
− | | pages = 47–97
| |
− | | |
− | | 页数 = 47-97
| |
− | | |
− | | year = 2002
| |
− | | |
− | | year = 2002
| |
− | | |
− | 2002年
| |
− | | |
− | | doi = 10.1103/RevModPhys.74.47
| |
− | | |
− | | doi = 10.1103/RevModPhys.74.47
| |
− | | |
− | 10.1103/RevModPhys. 74.47
| |
− | | |
− | | bibcode=2002RvMP...74...47A
| |
− | | |
− | | bibcode=2002RvMP...74...47A
| |
− | | |
− | 2002RvMP... 74... 47A
| |
− | | |
− | |arxiv = cond-mat/0106096 }}</ref>
| |
− | | |
− | |arxiv = cond-mat/0106096 }}</ref>
| |
− | | |
− | |arxiv = cond-mat/0106096 }}</ref>
| |
| | | |
| * (a) Scale-free networks assume a continuous growth of the number of nodes ''N'', compared to random networks which assume a fixed number of nodes. In scale-free networks the degree of the largest hub rises polynomially with the size of the network. Therefore, the degree of a hub can be high in a scale-free network. In random networks the degree of the largest node rises logaritmically (or slower) with N, thus the hub number will be small even in a very large network. | | * (a) Scale-free networks assume a continuous growth of the number of nodes ''N'', compared to random networks which assume a fixed number of nodes. In scale-free networks the degree of the largest hub rises polynomially with the size of the network. Therefore, the degree of a hub can be high in a scale-free network. In random networks the degree of the largest node rises logaritmically (or slower) with N, thus the hub number will be small even in a very large network. |