更改

跳到导航 跳到搜索
删除22字节 、 2020年11月1日 (日) 17:44
无编辑摘要
第58行: 第58行:  
Every space filling curve hits some points multiple times, and does not have a continuous inverse. It is impossible to map two dimensions onto one in a way that is continuous and continuously invertible. The topological dimension, also called Lebesgue covering dimension, explains why. This dimension is n if, in every covering of X by small open balls, there is at least one point where n + 1 balls overlap. For example, when one covers a line with short open intervals, some points must be covered twice, giving dimension n = 1.
 
Every space filling curve hits some points multiple times, and does not have a continuous inverse. It is impossible to map two dimensions onto one in a way that is continuous and continuously invertible. The topological dimension, also called Lebesgue covering dimension, explains why. This dimension is n if, in every covering of X by small open balls, there is at least one point where n + 1 balls overlap. For example, when one covers a line with short open intervals, some points must be covered twice, giving dimension n = 1.
   −
每条空间填充曲线都会多次撞击某些点,且不存在连续的倒数。将两个维度以连续和连续可逆的方式映射到一个维度是不可能的。'''<font color = '#ff8000'>拓扑维度 topological dimension</font>''',也被称为拓朴维数,解释了为什么。这个维度是 n,如果在 x 的每个小开球覆盖中,至少有一个点 n + 1个球重叠。例如,当一个点覆盖一条具有短开区间的直线时,某些点必须被覆盖两次,给出维数''n''&nbsp;=&nbsp;1。
+
每条空间填充曲线都会多次击中某些点,且不存在连续的逆。将二维以连续和连续可逆的方式映射到一维是不可能的。'''<font color = '#ff8000'>拓扑维度 topological dimension</font>''',也被称为Lebesgue覆盖维数,解释了为什么。如果在 x 的每个小开球覆盖中,至少有一个点 n + 1个球重叠,这个维度是 n。例如,当用短的开区间覆盖一条线时,某些点必须被覆盖两次,给出维数''n''&nbsp;=&nbsp;1。
     
66

个编辑

导航菜单