更改

跳到导航 跳到搜索
添加1,155字节 、 2020年11月1日 (日) 18:22
撤销Moonscar讨论)的版本17156
第1行: 第1行: −
此词条暂由彩云小译翻译,翻译字数共1006,未经人工整理和审校,带来阅读不便,请见谅。
+
此词条暂由Henry翻译。{{for|the journal|Evolutionary Computation (journal)}}
 +
 
   −
{{for|the journal|Evolutionary Computation (journal)}}
      
{{short description|Trial and error problem solvers with a metaheuristic or stochastic optimization character}}
 
{{short description|Trial and error problem solvers with a metaheuristic or stochastic optimization character}}
 +
 +
    
{{Evolutionary biology}}
 
{{Evolutionary biology}}
 +
 +
    
{{Use mdy dates|date=January 2012}}
 
{{Use mdy dates|date=January 2012}}
 +
 +
    
In [[computer science]], '''evolutionary computation''' is a family of [[algorithm]]s for [[global optimization]] inspired by [[biological evolution]], and the subfield of [[artificial intelligence]] and [[soft computing]] studying these algorithms. In technical terms, they are a family of population-based [[trial and error]] problem solvers with a [[metaheuristic]] or [[stochastic optimization]] character.
 
In [[computer science]], '''evolutionary computation''' is a family of [[algorithm]]s for [[global optimization]] inspired by [[biological evolution]], and the subfield of [[artificial intelligence]] and [[soft computing]] studying these algorithms. In technical terms, they are a family of population-based [[trial and error]] problem solvers with a [[metaheuristic]] or [[stochastic optimization]] character.
第13行: 第19行:  
In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
 
In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.
   −
在计算机科学领域,进化计算是一个受生物进化启发的全局优化算法家族,人工智能和软计算的子领域研究这些算法。在技术术语,他们是一个家庭的基于人口试验和错误的问题解决与亚启发式或随机优化性质。
+
在计算机科学中,演化计算<font color="#ff8000"> 演化计算Evolutionary computation</font>是一个受生物进化启发的全局优化算法家族,人工智能和软计算的子领域研究这些算法。用技术术语来讲,他们是一个基于人口试验和错误的问题解决并具有亚启发式或随机优化性质的家族。
 +
 
 +
 
      第21行: 第29行:  
In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated. Each new generation is produced by stochastically removing less desired solutions, and introducing small random changes. In biological terminology, a population of solutions is subjected to natural selection (or artificial selection) and mutation. As a result, the population will gradually evolve to increase in fitness, in this case the chosen fitness function of the algorithm.
 
In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated. Each new generation is produced by stochastically removing less desired solutions, and introducing small random changes. In biological terminology, a population of solutions is subjected to natural selection (or artificial selection) and mutation. As a result, the population will gradually evolve to increase in fitness, in this case the chosen fitness function of the algorithm.
   −
在进化计算,一个初始的候选解决方案集生成和迭代更新。每一代都是通过随机去除不太理想的溶液,引入小的随机变化而产生的。在生物学术语中,解决方案的种群经受自然选择(或人工选择)和突变。因此,种群将逐渐演化,以增加适应度,在这种情况下,选择适应度函数的算法。
+
在演化计算中,一个初始的候选解决方案集被生成并迭代更新。每一代都是通过随机去除不太理想的解法,引入小的随机变化而产生的。在生物学术语中,一个解决方案的群体经历自然选择(或人工选择)和突变。因此,种群将逐渐演化以增加适应度,在这种情况下,选择适应度函数的算法。
 +
 
 +
 
      第29行: 第39行:  
Evolutionary computation techniques can produce highly optimized solutions in a wide range of problem settings, making them popular in computer science. Many variants and extensions exist, suited to more specific families of problems and data structures. Evolutionary computation is also sometimes used in evolutionary biology as an in silico experimental procedure to study common aspects of general evolutionary processes.
 
Evolutionary computation techniques can produce highly optimized solutions in a wide range of problem settings, making them popular in computer science. Many variants and extensions exist, suited to more specific families of problems and data structures. Evolutionary computation is also sometimes used in evolutionary biology as an in silico experimental procedure to study common aspects of general evolutionary processes.
   −
进化计算技术可以在大范围的问题设置中产生高度优化的解决方案,这使得它们在计算机科学中广受欢迎。存在许多变体和扩展,适合于更具体的问题和数据结构家族。进化计算有时也被用于进化生物学中,作为一种计算机实验过程来研究一般进化过程的共同方面。
+
进化计算技术可以在大范围的问题设置中产生高度优化的解决方案,这使得它们在计算机科学中受欢迎。存在许多变体和扩展,适合于更具体的问题和数据结构的家族。进化计算有时也用于进化生物学,作为一个硅胶实验过程,以研究一般进化过程的共同方面。
       +
 +
 +
 +
== History ==
    
== History ==
 
== History ==
 +
 +
历史
    
The use of evolutionary principles for automated problem solving originated in the 1950s. It was not until the 1960s that three distinct interpretations of this idea started to be developed in three different places.
 
The use of evolutionary principles for automated problem solving originated in the 1950s. It was not until the 1960s that three distinct interpretations of this idea started to be developed in three different places.
第39行: 第55行:  
The use of evolutionary principles for automated problem solving originated in the 1950s. It was not until the 1960s that three distinct interpretations of this idea started to be developed in three different places.
 
The use of evolutionary principles for automated problem solving originated in the 1950s. It was not until the 1960s that three distinct interpretations of this idea started to be developed in three different places.
   −
自动化问题解决的进化原理的使用起源于20世纪50年代。直到20世纪60年代,才在三个不同的地方开始形成对这一思想的三种不同的解释。
+
自动化问题解决的演化原理的使用起源于20世纪50年代。直到20世纪60年代,才在三个不同的地方形成了对这一观点的三种不同的解释。
 +
 
 +
 
      第47行: 第65行:  
Evolutionary programming was introduced by Lawrence J. Fogel in the US, while John Henry Holland called his method a genetic algorithm. In Germany Ingo Rechenberg and Hans-Paul Schwefel introduced evolution strategies. These areas developed separately for about 15 years. From the early nineties on they are unified as different representatives ("dialects") of one technology, called evolutionary computing. Also in the early nineties, a fourth stream following the general ideas had emerged – genetic programming. Since the 1990s, nature-inspired algorithms are becoming an increasingly significant part of the evolutionary computation.
 
Evolutionary programming was introduced by Lawrence J. Fogel in the US, while John Henry Holland called his method a genetic algorithm. In Germany Ingo Rechenberg and Hans-Paul Schwefel introduced evolution strategies. These areas developed separately for about 15 years. From the early nineties on they are unified as different representatives ("dialects") of one technology, called evolutionary computing. Also in the early nineties, a fourth stream following the general ideas had emerged – genetic programming. Since the 1990s, nature-inspired algorithms are becoming an increasingly significant part of the evolutionary computation.
   −
进化规划是由美国的劳伦斯 · j · 福格尔提出的,而约翰 · 亨利 · 霍兰德则称他的方法为遗传算法。在德国,Ingo Rechenberg 和 Hans-Paul Schwefel 引入了进化策略。这些地区分别发展了大约15年。从九十年代早期开始,它们被统一为一种被称为进化计算的技术的不同代表(“方言”)。也是在九十年代初期,出现了继一般思想之后的第四种思潮——遗传编程。自20世纪90年代以来,基于大自然的算法正在成为进化计算的一个重要组成部分。
+
进化规划是由美国的 Lawrence J. Foge提出的,而 John Henry Holland称他的方法为遗传算法。在德国,Ingo Rechenberg 和 Hans-Paul Schwefel 引入了进化策略。这些地区分别发展了大约15年。从九十年代早期开始,它们被统一为一种被称为演化计算的技术的不同代表(类似“方言”)。也是在九十年代初期,出现了继一般思想之后的第四种思潮——遗传程序设计。自20世纪90年代以来,以自然为灵感的算法正在成为日益重要的演化计算。
 +
 
 +
 
      第55行: 第75行:  
These terminologies denote the field of evolutionary computing and consider evolutionary programming, evolution strategies, genetic algorithms, and genetic programming as sub-areas.
 
These terminologies denote the field of evolutionary computing and consider evolutionary programming, evolution strategies, genetic algorithms, and genetic programming as sub-areas.
   −
这些术语表示进化计算领域,并将进化规划、进化策略、遗传算法和遗传规划作为子领域。
+
这些术语表示演化计算领域,并将演化规划、演化策略、遗传算法和遗传规划作为子领域。
 +
 
 +
 
         −
Simulations of [[evolution]] using [[evolutionary algorithm]]s and [[artificial life]] started with the work of Nils Aall Barricelli in the 1960s, and was extended by [[Alex Fraser (scientist)|Alex Fraser]], who published a series of papers on simulation of [[artificial selection]].<ref>{{cite journal |author=Fraser AS |title=Monte Carlo analyses of genetic models |journal=Nature |volume=181 |issue=4603 |pages=208–9 |year=1958 |pmid=13504138 |doi=10.1038/181208a0 |ref=harv|bibcode=1958Natur.181..208F |s2cid=4211563 }}</ref> [[Evolutionary algorithm|Artificial evolution]] became a widely recognised optimisation method as a result of the work of [[Ingo Rechenberg]] in the 1960s and early 1970s, who used [[Evolution strategy|evolution strategies]] to solve complex engineering problems.<ref>{{cite book |last=Rechenberg |first=Ingo |year=1973 |title=Evolutionsstrategie&nbsp;– Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (PhD thesis) |publisher=Fromman-Holzboog|language = German}}</ref> [[Genetic algorithm]]s in particular became popular through the writing of [[John Henry Holland|John Holland]].<ref>{{cite book |last=Holland |first=John H. |year=1975 |title=Adaptation in Natural and Artificial Systems |publisher=[[University of Michigan Press]] |isbn=978-0-262-58111-0 |url-access=registration |url=https://archive.org/details/adaptationinnatu00holl }}</ref> As academic interest grew, dramatic increases in the power of computers allowed practical applications, including the automatic evolution of computer programs.<ref>{{cite book |last=Koza|first=John R. |year=1992 |title=Genetic Programming: On the Programming of Computers by Means of Natural Selection|publisher=[[MIT Press]] |isbn=978-0-262-11170-6}}</ref> Evolutionary algorithms are now used to solve multi-dimensional problems more efficiently than software produced by human designers, and also to optimise the design of systems.<ref>G. C. Onwubolu and  B V Babu, {{cite book|url=https://www.springer.com/in/book/9783540201670|title=New Optimization Techniques in Engineering|accessdate=17 September 2016|isbn=9783540201670|last1=Onwubolu|first1=Godfrey C.|last2=Babu|first2=B. V.|date=2004-01-21}}</ref><ref>{{cite journal |author=Jamshidi M |title=Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms |journal=[[Philosophical Transactions of the Royal Society A]] |volume=361 |issue=1809 |pages=1781–808 |year=2003 |pmid=12952685 |doi=10.1098/rsta.2003.1225 |ref=harv|bibcode=2003RSPTA.361.1781J |s2cid=34259612 }}</ref>
+
Simulations of [[evolution]] using [[evolutionary algorithm]]s and [[artificial life]] started with the work of Nils Aall Barricelli in the 1960s, and was extended by [[Alex Fraser (scientist)|Alex Fraser]], who published a series of papers on simulation of [[artificial selection]].<ref>{{cite journal |author=Fraser AS |title=Monte Carlo analyses of genetic models |journal=Nature |volume=181 |issue=4603 |pages=208–9 |year=1958 |pmid=13504138 |doi=10.1038/181208a0 |ref=harv|bibcode=1958Natur.181..208F }}</ref> [[Evolutionary algorithm|Artificial evolution]] became a widely recognised optimisation method as a result of the work of [[Ingo Rechenberg]] in the 1960s and early 1970s, who used [[Evolution strategy|evolution strategies]] to solve complex engineering problems.<ref>{{cite book |last=Rechenberg |first=Ingo |year=1973 |title=Evolutionsstrategie&nbsp;– Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (PhD thesis) |publisher=Fromman-Holzboog|language = German}}</ref> [[Genetic algorithm]]s in particular became popular through the writing of [[John Henry Holland|John Holland]].<ref>{{cite book |last=Holland |first=John H. |year=1975 |title=Adaptation in Natural and Artificial Systems |publisher=[[University of Michigan Press]] |isbn=978-0-262-58111-0 |url-access=registration |url=https://archive.org/details/adaptationinnatu00holl }}</ref> As academic interest grew, dramatic increases in the power of computers allowed practical applications, including the automatic evolution of computer programs.<ref>{{cite book |last=Koza|first=John R. |year=1992 |title=Genetic Programming: On the Programming of Computers by Means of Natural Selection|publisher=[[MIT Press]] |isbn=978-0-262-11170-6}}</ref> Evolutionary algorithms are now used to solve multi-dimensional problems more efficiently than software produced by human designers, and also to optimise the design of systems.<ref>G. C. Onwubolu and  B V Babu, {{cite book|url=https://www.springer.com/in/book/9783540201670|title=New Optimization Techniques in Engineering|accessdate=17 September 2016|isbn=9783540201670|last1=Onwubolu|first1=Godfrey C.|last2=Babu|first2=B. V.|date=2004-01-21}}</ref><ref>{{cite journal |author=Jamshidi M |title=Tools for intelligent control: fuzzy controllers, neural networks and genetic algorithms |journal=[[Philosophical Transactions of the Royal Society A]] |volume=361 |issue=1809 |pages=1781–808 |year=2003 |pmid=12952685 |doi=10.1098/rsta.2003.1225 |ref=harv|bibcode=2003RSPTA.361.1781J }}</ref>
    
Simulations of evolution using evolutionary algorithms and artificial life started with the work of Nils Aall Barricelli in the 1960s, and was extended by Alex Fraser, who published a series of papers on simulation of artificial selection. Artificial evolution became a widely recognised optimisation method as a result of the work of Ingo Rechenberg in the 1960s and early 1970s, who used evolution strategies to solve complex engineering problems. Genetic algorithms in particular became popular through the writing of John Holland. As academic interest grew, dramatic increases in the power of computers allowed practical applications, including the automatic evolution of computer programs. Evolutionary algorithms are now used to solve multi-dimensional problems more efficiently than software produced by human designers, and also to optimise the design of systems.
 
Simulations of evolution using evolutionary algorithms and artificial life started with the work of Nils Aall Barricelli in the 1960s, and was extended by Alex Fraser, who published a series of papers on simulation of artificial selection. Artificial evolution became a widely recognised optimisation method as a result of the work of Ingo Rechenberg in the 1960s and early 1970s, who used evolution strategies to solve complex engineering problems. Genetic algorithms in particular became popular through the writing of John Holland. As academic interest grew, dramatic increases in the power of computers allowed practical applications, including the automatic evolution of computer programs. Evolutionary algorithms are now used to solve multi-dimensional problems more efficiently than software produced by human designers, and also to optimise the design of systems.
   −
利用进化算法和人工生命模拟进化,始于20世纪60年代尼尔斯 · 阿尔 · 巴里切利的工作,后来被亚历克斯 · 弗雷泽扩展,他发表了一系列关于人工选择模拟的论文。20世纪60年代和70年代早期,Ingo Rechenberg 使用进化策略来解决复杂的工程问题,人工进化因此成为一种被广泛认可的优化方法。遗传算法尤其通过约翰 · 霍兰德的著作而流行起来。随着学术兴趣的增长,计算机能力的戏剧性增长允许实际应用,包括计算机程序的自动进化。进化算法现在被用来解决多维问题,比人类设计师开发的软件更有效率,也可以用来优化系统设计。
+
利用演化算法和人工生命模拟进化,始于20世纪60年代 Nils Aall Barricelli的工作,后来被Alex Fraser扩展,他发表了一系列关于人工选择模拟的论文。20世纪60年代和70年代早期,Ingo Rechenberg 使用演化策略解决复杂的工程问题,人工进化因此成为广泛认可的优化方法。遗传算法尤其通过John Holland的著作而流行起来。随着学术兴趣的增长,计算机能力的戏剧性增长允许其实际应用,包括计算机程序的自动进化。演化算法现在被用来解决多维问题,比人类设计师开发的软件更有效率,它也可以用来优化系统设计。
       +
 +
 +
 +
== Techniques ==
    
== Techniques ==
 
== Techniques ==
    +
== Techniques ==
 +
技术
 
Evolutionary computing techniques mostly involve [[metaheuristic]] [[Mathematical optimization|optimization]] [[algorithm]]s. Broadly speaking, the field includes:
 
Evolutionary computing techniques mostly involve [[metaheuristic]] [[Mathematical optimization|optimization]] [[algorithm]]s. Broadly speaking, the field includes:
   第74行: 第102行:     
进化计算技术主要涉及元启发式优化算法。一般来说,这个领域包括:
 
进化计算技术主要涉及元启发式优化算法。一般来说,这个领域包括:
 +
 +
          
*[[Ant colony optimization]]
 
*[[Ant colony optimization]]
 +
 +
蚁群算法
    
*[[Artificial immune system]]s
 
*[[Artificial immune system]]s
 +
 +
人工免疫系统
    
*[[Artificial life]] (also see [[digital organism]])
 
*[[Artificial life]] (also see [[digital organism]])
 +
 +
人工生命(参见电子生命)
    
*[[Cultural algorithm]]s
 
*[[Cultural algorithm]]s
 +
文化算法
 +
    
*[[Differential evolution]]
 
*[[Differential evolution]]
 +
 +
差分演化
    
*[[Dual-phase evolution]]
 
*[[Dual-phase evolution]]
 +
 +
双相演化
    
*[[Estimation of distribution algorithm]]s
 
*[[Estimation of distribution algorithm]]s
 +
 +
分布算法估计
    
*[[Evolutionary algorithm]]s
 
*[[Evolutionary algorithm]]s
    +
演化算法
 
*[[Evolutionary programming]]
 
*[[Evolutionary programming]]
    +
演化编程
 
*[[Evolution strategy]]
 
*[[Evolution strategy]]
 +
演化策略
 +
    
*[[Gene expression programming]]
 
*[[Gene expression programming]]
 +
 +
基因表达式编程算法
    
*[[Genetic algorithm]]
 
*[[Genetic algorithm]]
 +
 +
基因算法
    
*[[Genetic programming]]
 
*[[Genetic programming]]
 +
基因编程
 +
    
*[[Grammatical evolution]]
 
*[[Grammatical evolution]]
    +
 +
文法进化
 
*[[Learnable evolution model]]
 
*[[Learnable evolution model]]
    +
 +
可学习演化模型
 
*[[Learning classifier system]]s
 
*[[Learning classifier system]]s
    +
 +
学习分类系统
 
*[[Memetic algorithms]]
 
*[[Memetic algorithms]]
 +
 +
遗传算法
    
*[[Neuroevolution]]
 
*[[Neuroevolution]]
 +
神经进化
 +
    
*[[Particle swarm optimization]]
 
*[[Particle swarm optimization]]
 +
 +
粒子群优化算法
 +
 +
*[[Synergistic Fibroblast Optimization]]
 +
 +
协作成纤维细胞优化
    
*[[Self-organization]] such as [[self-organizing map]]s, [[competitive learning]]
 
*[[Self-organization]] such as [[self-organizing map]]s, [[competitive learning]]
 +
自我管理(例如自组织特征映射模型 竞争性学习)
 +
    
*[[Swarm intelligence]]
 
*[[Swarm intelligence]]
 +
 +
集群智能
 +
 +
 +
       +
== Evolutionary algorithms ==
    
== Evolutionary algorithms ==
 
== Evolutionary algorithms ==
 +
 +
演化算法
    
{{Main|Evolutionary algorithm}}
 
{{Main|Evolutionary algorithm}}
 +
 +
    
[[Evolutionary algorithms]] form a subset of evolutionary computation in that they generally only involve techniques implementing mechanisms inspired by [[biological evolution]] such as [[reproduction]], [[mutation]], [[Genetic recombination|recombination]], [[natural selection]] and [[survival of the fittest]]. [[Candidate solutions]] to the optimization problem play the role of individuals in a population, and the [[Loss function|cost function]] determines the environment within which the solutions "live" (see also [[fitness function]]). [[Evolution]] of the population then takes place after the repeated application of the above operators.
 
[[Evolutionary algorithms]] form a subset of evolutionary computation in that they generally only involve techniques implementing mechanisms inspired by [[biological evolution]] such as [[reproduction]], [[mutation]], [[Genetic recombination|recombination]], [[natural selection]] and [[survival of the fittest]]. [[Candidate solutions]] to the optimization problem play the role of individuals in a population, and the [[Loss function|cost function]] determines the environment within which the solutions "live" (see also [[fitness function]]). [[Evolution]] of the population then takes place after the repeated application of the above operators.
第129行: 第211行:  
Evolutionary algorithms form a subset of evolutionary computation in that they generally only involve techniques implementing mechanisms inspired by biological evolution such as reproduction, mutation, recombination, natural selection and survival of the fittest. Candidate solutions to the optimization problem play the role of individuals in a population, and the cost function determines the environment within which the solutions "live" (see also fitness function). Evolution of the population then takes place after the repeated application of the above operators.
 
Evolutionary algorithms form a subset of evolutionary computation in that they generally only involve techniques implementing mechanisms inspired by biological evolution such as reproduction, mutation, recombination, natural selection and survival of the fittest. Candidate solutions to the optimization problem play the role of individuals in a population, and the cost function determines the environment within which the solutions "live" (see also fitness function). Evolution of the population then takes place after the repeated application of the above operators.
   −
进化算法是进化计算的一个子集,因为它们通常只涉及实现生物进化机制的技术,如繁殖、变异、重组、自然选择和适者生存。最佳化问题的候选解决方案扮演了人口中个体的角色,而成本函数决定了解决方案“生存”的环境(参见适应度函数)。在重复应用上述算子之后,种群的演化就发生了。
+
演化算法是演化计算的一个子集,因为它们通常只涉及实现生物进化机制的技术,如繁殖、变异、重组、自然选择和适者生存。最佳化问题的候选解决方案扮演了人口中个体的角色,而成本函数决定了解决方案“生存”的环境(参见适应度函数)。在重复应用上述算子之后,种群的演化就发生了。
 +
 
 +
 
      第137行: 第221行:  
In this process, there are two main forces that form the basis of evolutionary systems:  Recombination mutation and crossover create the necessary diversity and thereby facilitate novelty, while selection acts as a force increasing quality.
 
In this process, there are two main forces that form the basis of evolutionary systems:  Recombination mutation and crossover create the necessary diversity and thereby facilitate novelty, while selection acts as a force increasing quality.
   −
在这个过程中,有两种主要的力量构成了进化系统的基础: 重组变异和交叉创造了必要的多样性,从而促进了新颖性,而选择作为一种力量提高质量。
+
在这个过程中,有两种主要的力量构成了进化系统的基础: 重组变异和交叉创造了必要的多样性,从而促进了新颖性,而选择作为一种力来提高质量。
 +
 
 +
 
      第148行: 第234行:        +
 +
 +
 +
== Evolutionary algorithms and biology ==
    
== Evolutionary algorithms and biology ==
 
== Evolutionary algorithms and biology ==
 +
 +
演化算法和生物学
    
{{Main|Evolutionary algorithm}}
 
{{Main|Evolutionary algorithm}}
 +
 +
 +
 +
      第159行: 第255行:  
Genetic algorithms deliver methods to model biological systems and systems biology that are linked to the theory of dynamical systems, since they are used to predict the future states of the system. This is just a vivid (but perhaps misleading) way of drawing attention to the orderly, well-controlled and highly structured character of development in biology.
 
Genetic algorithms deliver methods to model biological systems and systems biology that are linked to the theory of dynamical systems, since they are used to predict the future states of the system. This is just a vivid (but perhaps misleading) way of drawing attention to the orderly, well-controlled and highly structured character of development in biology.
   −
遗传算法提供的方法模型生物系统和系统生物学是连接到动力系统理论,因为他们是用来预测未来的状态的系统。这只是一种生动的(但也许是误导性的)方式,提请人们注意生物学发展的有序、控制良好和高度结构化的特征。
+
遗传算法提供了与动力系统理论相关的生物系统和系统生物学模型的方法,因为它们被用来预测系统的未来状态。这只是一种生动的(但也许是误导性的)方式,提醒人们注意生物学发展的有序、控制良好和高度结构化的特征。
 +
 
 +
 
      第167行: 第265行:  
However, the use of algorithms and informatics, in particular of computational theory, beyond the analogy to dynamical systems, is also relevant to understand evolution itself.
 
However, the use of algorithms and informatics, in particular of computational theory, beyond the analogy to dynamical systems, is also relevant to understand evolution itself.
   −
然而,算法和信息学的使用,特别是计算理论的使用,超越了对动力系统的类比,也与理解进化本身有关。
+
然而,算法和信息学的使用,特别是计算理论的使用,超越了对动力系统的类比,也与理解演化本身有关。
         −
This view has the merit of recognizing that there is no central control of development; organisms develop as a result of local interactions within and between cells. The most promising ideas about program-development parallels seem to us to be ones that point to an apparently close analogy between processes within cells, and the low-level operation of modern computers.<ref>{{Cite book | chapter-url=https://plato.stanford.edu/entries/information-biological/#InfEvo | title=The Stanford Encyclopedia of Philosophy| chapter=Biological Information| publisher=Metaphysics Research Lab, Stanford University| year=2016}}</ref> Thus, biological systems are like computational machines that process input information to compute next states, such that biological systems are closer to a computation than classical dynamical system.<ref>{{cite journal |author= J.G. Diaz Ochoa |title= Elastic Multi-scale Mechanisms: Computation and Biological Evolution |journal=[[Journal of Molecular Evolution]] |volume=86 |issue=1 |pages=47–57 |year=2018 |pmid=29248946 |doi=10.1007/s00239-017-9823-7 |ref=harv|bibcode=2018JMolE..86...47D |s2cid= 22624633 }}</ref>
+
 
 +
 
 +
This view has the merit of recognizing that there is no central control of development; organisms develop as a result of local interactions within and between cells. The most promising ideas about program-development parallels seem to us to be ones that point to an apparently close analogy between processes within cells, and the low-level operation of modern computers.<ref>{{Cite book | chapter-url=https://plato.stanford.edu/entries/information-biological/#InfEvo | title=The Stanford Encyclopedia of Philosophy| chapter=Biological Information| publisher=Metaphysics Research Lab, Stanford University| year=2016}}</ref> Thus, biological systems are like computational machines that process input information to compute next states, such that biological systems are closer to a computation than classical dynamical system.<ref>{{cite journal |author= J.G. Diaz Ochoa |title= Elastic Multi-scale Mechanisms: Computation and Biological Evolution |journal=[[Journal of Molecular Evolution]] |volume=86 |issue=1 |pages=47–57 |year=2018 |pmid=29248946 |doi=10.1007/s00239-017-9823-7 |ref=harv|bibcode=2018JMolE..86...47D }}</ref>
    
This view has the merit of recognizing that there is no central control of development; organisms develop as a result of local interactions within and between cells. The most promising ideas about program-development parallels seem to us to be ones that point to an apparently close analogy between processes within cells, and the low-level operation of modern computers. Thus, biological systems are like computational machines that process input information to compute next states, such that biological systems are closer to a computation than classical dynamical system.
 
This view has the merit of recognizing that there is no central control of development; organisms develop as a result of local interactions within and between cells. The most promising ideas about program-development parallels seem to us to be ones that point to an apparently close analogy between processes within cells, and the low-level operation of modern computers. Thus, biological systems are like computational machines that process input information to compute next states, such that biological systems are closer to a computation than classical dynamical system.
   −
这种观点的优点是认识到发育没有中央控制; 生物体的发育是细胞内部和细胞之间局部相互作用的结果。在我们看来,关于程序开发平行线最有前途的想法似乎是指向细胞内的进程与现代计算机的低级操作之间明显非常相似的类比。因此,生物系统就像计算机器,处理输入信息来计算下一个状态,这样生物系统比传统的动力系统更接近于计算。
+
这种观点的优点是认识到发育没有中央控制,生物体的发育是细胞内部和细胞之间局部相互作用的结果。在我们看来,关于程序开发平行线的最有前途的想法似乎是指向细胞内的进程与现代计算机的低级操作之间明显非常相似的类比。因此,生物系统就像计算机器,处理输入信息来计算下一个状态,这样生物系统比传统的动力系统更接近于计算。
 +
 
 +
 
      第184行: 第286行:     
此外,根据计算理论的概念,生物有机体中的微进程从根本上来说是不完整的和不可判定的(完整性(逻辑)) ,这意味着“细胞和计算机之间的类比背后不只是一个粗略的比喻。
 
此外,根据计算理论的概念,生物有机体中的微进程从根本上来说是不完整的和不可判定的(完整性(逻辑)) ,这意味着“细胞和计算机之间的类比背后不只是一个粗略的比喻。
 +
 +
      第192行: 第296行:     
计算的类比也延伸到遗传系统和生物结构之间的关系,这通常被认为是揭示解释生命起源最紧迫的问题之一。
 
计算的类比也延伸到遗传系统和生物结构之间的关系,这通常被认为是揭示解释生命起源最紧迫的问题之一。
 +
 +
      第199行: 第305行:  
Evolutionary automata, a generalization of Evolutionary Turing machines, have been introduced in order to investigate more precisely properties of biological and evolutionary computation. In particular, they allow to obtain new results on expressiveness of evolutionary computation. This confirms the initial result about undecidability of natural evolution and evolutionary algorithms and processes. Evolutionary finite automata, the simplest subclass of Evolutionary automata working in terminal mode can accept arbitrary languages over a given alphabet, including non-recursively enumerable (e.g., diagonalization language) and recursively enumerable but not recursive languages (e.g., language of the universal Turing machine).  
 
Evolutionary automata, a generalization of Evolutionary Turing machines, have been introduced in order to investigate more precisely properties of biological and evolutionary computation. In particular, they allow to obtain new results on expressiveness of evolutionary computation. This confirms the initial result about undecidability of natural evolution and evolutionary algorithms and processes. Evolutionary finite automata, the simplest subclass of Evolutionary automata working in terminal mode can accept arbitrary languages over a given alphabet, including non-recursively enumerable (e.g., diagonalization language) and recursively enumerable but not recursive languages (e.g., language of the universal Turing machine).  
   −
进化自动机是进化图灵机的一种推广,为了更精确地研究生物学和进化计算的性质,人们引入了它。特别是,他们允许在进化计算的表现力上获得新的结果。这证实了关于自然进化和进化算法及过程不可判定性的初步结果。进化有限自动机是进化自动机中最简单的子类,可以在给定的字母表上接受任意语言,包括非递归的可枚举语言(例如,对角化语言)和递归的可枚举但不递归语言(例如,通用图灵机语言)。
+
进化自动机是进化图灵机<font color="#ff8000"> 图灵机Turing machines</font>的一种推广,为了更精确地研究生物和进化计算的性质,人们引入了它。特别是,他们允许在进化计算的表现力上获得新的结果。这证实了关于自然进化和进化算法及过程不可判定性的初步结果。进化有限自动机是进化自动机中最简单的子类,在终端模式下可以接受给定字母表上的任意语言,包括非递归的可枚举语言(例如,对角化语言)和递归的可枚举但不递归语言(例如,通用图灵机语言)。
 +
 
 +
 
 +
 
       +
== Notable practitioners ==
    
== Notable practitioners ==
 
== Notable practitioners ==
 +
 +
著名从业人员
    
The list of active researchers is naturally dynamic and non-exhaustive. A network analysis of the community was published in 2007.<ref>{{cite arXiv |author=J.J. Merelo and C. Cotta |title=Who is the best connected EC researcher? Centrality analysis of the complex network of authors in evolutionary computation |year=2007 |eprint=0708.2021|class=cs.CY }}</ref>
 
The list of active researchers is naturally dynamic and non-exhaustive. A network analysis of the community was published in 2007.<ref>{{cite arXiv |author=J.J. Merelo and C. Cotta |title=Who is the best connected EC researcher? Centrality analysis of the complex network of authors in evolutionary computation |year=2007 |eprint=0708.2021|class=cs.CY }}</ref>
第210行: 第322行:     
活跃的研究人员名单自然是动态的,并非详尽无遗。社区的网络分析在2007年发表。
 
活跃的研究人员名单自然是动态的,并非详尽无遗。社区的网络分析在2007年发表。
 +
 +
          
* [[Kalyanmoy Deb]]
 
* [[Kalyanmoy Deb]]
 +
 +
    
* [[Kenneth A De Jong]]
 
* [[Kenneth A De Jong]]
 +
 +
    
* [[Peter J. Fleming]]
 
* [[Peter J. Fleming]]
 +
 +
    
* [[David B. Fogel]]
 
* [[David B. Fogel]]
 +
 +
    
* [[Stephanie Forrest]]
 
* [[Stephanie Forrest]]
 +
 +
    
* [[David E. Goldberg]]
 
* [[David E. Goldberg]]
 +
 +
    
* [[John Henry Holland]]
 
* [[John Henry Holland]]
 +
 +
    
* [[Theo Jansen]]
 
* [[Theo Jansen]]
 +
 +
    
* [[John Koza]]
 
* [[John Koza]]
 +
 +
    
* [[Zbigniew Michalewicz]]
 
* [[Zbigniew Michalewicz]]
 +
 +
    
* [[Melanie Mitchell]]
 
* [[Melanie Mitchell]]
 +
 +
    
* [[Peter Nordin]]
 
* [[Peter Nordin]]
 +
 +
    
* [[Riccardo Poli]]
 
* [[Riccardo Poli]]
 +
 +
    
* [[Ingo Rechenberg]]
 
* [[Ingo Rechenberg]]
 +
 +
    
* [[Hans-Paul Schwefel]]
 
* [[Hans-Paul Schwefel]]
 +
 +
 +
 +
          
== Conferences ==
 
== Conferences ==
 +
 +
== Conferences ==
 +
 +
会议
    
The main conferences in the evolutionary computation area include  
 
The main conferences in the evolutionary computation area include  
第254行: 第404行:     
* [[Association for Computing Machinery|ACM]] [[Genetic and Evolutionary Computation Conference]] (GECCO),  
 
* [[Association for Computing Machinery|ACM]] [[Genetic and Evolutionary Computation Conference]] (GECCO),  
 +
 +
    
* [[IEEE Congress on Evolutionary Computation]] (CEC),  
 
* [[IEEE Congress on Evolutionary Computation]] (CEC),  
 +
 +
    
* [[EvoStar]], which comprises four conferences: EuroGP, EvoApplications, EvoCOP and EvoMUSART,  
 
* [[EvoStar]], which comprises four conferences: EuroGP, EvoApplications, EvoCOP and EvoMUSART,  
 +
 +
    
* Parallel Problem Solving from Nature (PPSN).
 
* Parallel Problem Solving from Nature (PPSN).
 +
 +
 +
 +
      第265行: 第425行:  
== See also ==
 
== See also ==
   −
{{col div|colwidth=40em}}
+
== See also ==
 +
 
 +
参见
 +
 
 +
 
 +
 
 +
 
    
* [[Adaptive dimensional search]]
 
* [[Adaptive dimensional search]]
 +
适应性多维研究
 +
    
* [[Artificial development]]
 
* [[Artificial development]]
 +
 +
人工发展
    
* [[Autoconstructive]]
 
* [[Autoconstructive]]
 +
 +
自动建设性
    
* [[Developmental biology]]
 
* [[Developmental biology]]
 +
 +
发展性生物学
    
* [[Digital organism]]
 
* [[Digital organism]]
 +
 +
数字化生物
    
* [[Estimation of distribution algorithm]]
 
* [[Estimation of distribution algorithm]]
 +
 +
分布算法估计
    
* [[Evolutionary robotics]]
 
* [[Evolutionary robotics]]
 +
演化机器人
 +
    
* [[Evolved antenna]]
 
* [[Evolved antenna]]
 +
 +
演化天线
    
* [[Fitness approximation]]
 
* [[Fitness approximation]]
 +
 +
适应值近似
    
* [[Fitness function]]
 
* [[Fitness function]]
 +
 +
适应值函数
    
* [[Fitness landscape]]
 
* [[Fitness landscape]]
 +
适应度景观
    
* [[Genetic operators]]
 
* [[Genetic operators]]
 +
 +
遗传算子
    
* [[Grammatical evolution]]
 
* [[Grammatical evolution]]
 +
 +
文法演化
    
* [[Human-based evolutionary computation]]
 
* [[Human-based evolutionary computation]]
 +
 +
人类演化计算
    
* [[Inferential programming]]
 
* [[Inferential programming]]
 +
 +
推断编程
    
* [[Interactive evolutionary computation]]
 
* [[Interactive evolutionary computation]]
 +
 +
互动演化计算
    
* [[List of digital organism simulators]]
 
* [[List of digital organism simulators]]
    +
数字化有机体模拟器表
 
* [[Mutation testing]]
 
* [[Mutation testing]]
 +
 +
变异测试
    
* [[No free lunch in search and optimization]]
 
* [[No free lunch in search and optimization]]
 +
 +
研究和优化没有免费的午餐
    
* [[Program synthesis]]
 
* [[Program synthesis]]
    +
 +
程序综合
 
* [[Test functions for optimization]]
 
* [[Test functions for optimization]]
 +
优化测试函数
 +
    
* [[Universal Darwinism]]
 
* [[Universal Darwinism]]
   −
{{colend}}
+
普适达尔文主义
 +
 
          
== External links ==
 
== External links ==
 +
 +
== External links ==
 +
 +
外部链接
    
*[https://plato.stanford.edu/entries/information-biological/#InfEvo/ Article in the Stanford Encyclopedia of Philosophy about Biological Information (English)]
 
*[https://plato.stanford.edu/entries/information-biological/#InfEvo/ Article in the Stanford Encyclopedia of Philosophy about Biological Information (English)]
       +
 +
 +
 +
 +
 +
== Bibliography ==
    
== Bibliography ==
 
== Bibliography ==
 +
 +
参考书目
    
* Th. Bäck, D.B. Fogel, and [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.amazon.com/Handbook-Evolutionary-Computation-Thomas-Back/dp/0750303921 Handbook of Evolutionary Computation], 1997, {{ISBN|0750303921}}
 
* Th. Bäck, D.B. Fogel, and [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.amazon.com/Handbook-Evolutionary-Computation-Thomas-Back/dp/0750303921 Handbook of Evolutionary Computation], 1997, {{ISBN|0750303921}}
   −
* Th. Bäck and H.-P. Schwefel. [http://caribou.iisg.agh.edu.pl/pub/svn/age/jage/legacy/papers/mgrKA/pdf/evco.1993.1.1.pdf An overview of evolutionary algorithms for parameter optimization].{{dead link|date=August 2020}} Evolutionary Computation, 1(1):1–23, 1993.
+
 
 +
 
 +
* Th. Bäck and H.-P. Schwefel. [http://caribou.iisg.agh.edu.pl/pub/svn/age/jage/legacy/papers/mgrKA/pdf/evco.1993.1.1.pdf An overview of evolutionary algorithms for parameter optimization]. Evolutionary Computation, 1(1):1–23, 1993.
 +
 
 +
 
    
* W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Genetic Programming — An Introduction. Morgan Kaufmann, 1998.
 
* W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Genetic Programming — An Introduction. Morgan Kaufmann, 1998.
 +
 +
    
* S. Cagnoni, et al., [https://www.springer.com/computer+science/theoretical+computer+science/foundations+of+computations/book/978-3-540-67353-8 Real-World Applications of Evolutionary Computing], Springer-Verlag [[Lecture Notes in Computer Science]], Berlin, 2000.
 
* S. Cagnoni, et al., [https://www.springer.com/computer+science/theoretical+computer+science/foundations+of+computations/book/978-3-540-67353-8 Real-World Applications of Evolutionary Computing], Springer-Verlag [[Lecture Notes in Computer Science]], Berlin, 2000.
 +
 +
    
* R. Chiong, Th. Weise, [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-23423-1 Variants of Evolutionary Algorithms for Real-World Applications], [[Springer Publishing|Springer]], 2012, {{ISBN|3642234232}}
 
* R. Chiong, Th. Weise, [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-23423-1 Variants of Evolutionary Algorithms for Real-World Applications], [[Springer Publishing|Springer]], 2012, {{ISBN|3642234232}}
 +
 +
    
* K. A. De Jong, Evolutionary computation: a unified approach. [[MIT Press]], Cambridge MA, 2006
 
* K. A. De Jong, Evolutionary computation: a unified approach. [[MIT Press]], Cambridge MA, 2006
   −
* A. E. Eiben and J.E. Smith, [https://www.nature.com/articles/nature14544?proof=true19 From evolutionary computation to the evolution of things], Nature, 521:476-482, doi:10.1038/nature14544, 2015
     −
* A. E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, Springer, [https://www.springer.com/computer/theoretical+computer+science/book/978-3-540-40184-1 First edition], 2003; [https://www.springer.com/cn/book/9783662448731 Second edition], 2015
     −
* D. B. Fogel. Evolutionary Computation. [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.969.3703&rep=rep1&type=pdf Toward a New Philosophy of Machine Intelligence]. IEEE Press, Piscataway, NJ, 1995.
+
* {{cite journal |authors=A. E. Eiben and M. Schoenauer |title=Evolutionary computing|journal=Information Processing Letters|volume=82|pages=1–6|doi=10.1016/S0020-0190(02)00204-1|year=2002}}
 +
 
 +
 
 +
 
 +
* A. E. Eiben and J.E. Smith, [https://www.springer.com/computer/theoretical+computer+science/book/978-3-540-40184-1 Introduction to Evolutionary Computing], Springer, First edition, 2003, {{ISBN|3-540-40184-9}},
 +
 
 +
 
 +
 
 +
* D. B. Fogel. Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ, 1995.
 +
 
 +
 
 +
 
 +
* L. J. Fogel, A. J. Owens, and M. J. Walsh. [[Artificial Intelligence]] through Simulated Evolution. New York: John Wiley, 1966.
 +
 
   −
* L. J. Fogel, A. J. Owens, and M. J. Walsh. [https://cds.cern.ch/record/107769 Artificial Intelligence through Simulated Evolution]. New York: John Wiley, 1966.
      
* D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, 1989.
 
* D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison Wesley, 1989.
 +
 +
    
* J. H. Holland. Adaptation in natural and artificial systems. [[University of Michigan Press]], Ann Arbor, 1975.
 
* J. H. Holland. Adaptation in natural and artificial systems. [[University of Michigan Press]], Ann Arbor, 1975.
 +
 +
    
* P. Hingston, L. Barone, and [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.springer.com/computer/ai/book/978-3-540-74109-1 Design by Evolution, Natural Computing Series], 2008, [[Springer Publishing|Springer]], {{ISBN|3540741097}}
 
* P. Hingston, L. Barone, and [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.springer.com/computer/ai/book/978-3-540-74109-1 Design by Evolution, Natural Computing Series], 2008, [[Springer Publishing|Springer]], {{ISBN|3540741097}}
 +
 +
    
* J. R. Koza. Genetic Programming: On the Programming of Computers by means of Natural Evolution. MIT Press, Massachusetts, 1992.
 
* J. R. Koza. Genetic Programming: On the Programming of Computers by means of Natural Evolution. MIT Press, Massachusetts, 1992.
 +
 +
    
* F.J. Lobo, C.F. Lima, [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.amazon.com/Parameter-Evolutionary-Algorithms-Computational-Intelligence/dp/3642088929/ Parameter Setting in Evolutionary Algorithms], [[Springer Publishing|Springer]], 2010, {{ISBN|3642088929}}
 
* F.J. Lobo, C.F. Lima, [[Zbigniew Michalewicz|Z. Michalewicz]] (Editors), [https://www.amazon.com/Parameter-Evolutionary-Algorithms-Computational-Intelligence/dp/3642088929/ Parameter Setting in Evolutionary Algorithms], [[Springer Publishing|Springer]], 2010, {{ISBN|3642088929}}
 +
 +
    
* [[Zbigniew Michalewicz|Z. Michalewicz]], [https://www.springer.com/computer/ai/book/978-3-540-60676-5 Genetic Algorithms + Data Structures – Evolution Programs], 1996, [[Springer Publishing|Springer]], {{ISBN|3540606769}}
 
* [[Zbigniew Michalewicz|Z. Michalewicz]], [https://www.springer.com/computer/ai/book/978-3-540-60676-5 Genetic Algorithms + Data Structures – Evolution Programs], 1996, [[Springer Publishing|Springer]], {{ISBN|3540606769}}
 +
 +
    
*  [[Zbigniew Michalewicz|Z. Michalewicz]] and D.B. Fogel, [https://www.springer.com/computer/theoretical+computer+science/book/978-3-540-22494-5 How to Solve It: Modern Heuristics], [[Springer Publishing|Springer]], 2004, {{ISBN|978-3-540-22494-5}}
 
*  [[Zbigniew Michalewicz|Z. Michalewicz]] and D.B. Fogel, [https://www.springer.com/computer/theoretical+computer+science/book/978-3-540-22494-5 How to Solve It: Modern Heuristics], [[Springer Publishing|Springer]], 2004, {{ISBN|978-3-540-22494-5}}
 +
 +
    
* I. Rechenberg. Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973. {{in lang|de}}
 
* I. Rechenberg. Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973. {{in lang|de}}
 +
 +
    
* H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, New-York, 1981. 1995 – 2nd edition.
 
* H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, New-York, 1981. 1995 – 2nd edition.
 +
 +
    
* D. Simon. [http://academic.csuohio.edu/simond/EvolutionaryOptimization Evolutionary Optimization Algorithms]. Wiley, 2013.
 
* D. Simon. [http://academic.csuohio.edu/simond/EvolutionaryOptimization Evolutionary Optimization Algorithms]. Wiley, 2013.
 +
 +
    
* {{cite journal |authors=M. Sipper, W. Fu, K. Ahuja, and J. H. Moore |title=Investigating the parameter space of evolutionary algorithms|journal=BioData Mining|volume=11|pages=2|doi=10.1186/s13040-018-0164-x|pmid=29467825|pmc=5816380|year=2018}}
 
* {{cite journal |authors=M. Sipper, W. Fu, K. Ahuja, and J. H. Moore |title=Investigating the parameter space of evolutionary algorithms|journal=BioData Mining|volume=11|pages=2|doi=10.1186/s13040-018-0164-x|pmid=29467825|pmc=5816380|year=2018}}
 +
 +
    
* {{cite arxiv |authors=Y. Zhang and S. Li. |title=PSA: A novel optimization algorithm based on survival rules of porcellio scaber |eprint=1709.09840 |class=cs.NE |year=2017 }}
 
* {{cite arxiv |authors=Y. Zhang and S. Li. |title=PSA: A novel optimization algorithm based on survival rules of porcellio scaber |eprint=1709.09840 |class=cs.NE |year=2017 }}
       +
 +
 +
 +
 +
 +
== References ==
    
== References ==
 
== References ==
 +
 +
参考资料
 +
 +
      第377行: 第648行:  
{{reflist|refs=
 
{{reflist|refs=
   −
{通货再膨胀 | refs =
+
{通货再膨胀 | 参考文献
    
<ref name="ldr11">{{Cite book |doi = 10.1007/978-3-642-29694-9_9|isbn = 978-3-642-29693-2|chapter = Recursively Generated Evolutionary Turing Machines and Evolutionary Automata |editor=Xin-She Yang |title = Artificial Intelligence, Evolutionary Computing and Metaheuristics|series = Studies in Computational Intelligence|year = 2013|last1 = Burgin|first1 = Mark|last2 = Eberbach|first2 = Eugene|volume = 427|pages = 201–230 |publisher=Springer-Verlag}}</ref>
 
<ref name="ldr11">{{Cite book |doi = 10.1007/978-3-642-29694-9_9|isbn = 978-3-642-29693-2|chapter = Recursively Generated Evolutionary Turing Machines and Evolutionary Automata |editor=Xin-She Yang |title = Artificial Intelligence, Evolutionary Computing and Metaheuristics|series = Studies in Computational Intelligence|year = 2013|last1 = Burgin|first1 = Mark|last2 = Eberbach|first2 = Eugene|volume = 427|pages = 201–230 |publisher=Springer-Verlag}}</ref>
 +
 +
    
<ref name="ldr13">Burgin, M. and Eberbach, E. (2010)  Bounded and Periodic Evolutionary Machines, in Proc. 2010 Congress on Evolutionary Computation (CEC'2010), Barcelona, Spain, 2010, pp. 1379-1386</ref>
 
<ref name="ldr13">Burgin, M. and Eberbach, E. (2010)  Bounded and Periodic Evolutionary Machines, in Proc. 2010 Congress on Evolutionary Computation (CEC'2010), Barcelona, Spain, 2010, pp. 1379-1386</ref>
 +
 +
    
<ref name="ldr14">{{Cite journal |doi = 10.1093/comjnl/bxr099|title = Evolutionary Automata: Expressiveness and Convergence of Evolutionary Computation|year = 2012|last1 = Burgin|first1 = M.|last2 = Eberbach|first2 = E.|journal = The Computer Journal|volume = 55|issue = 9|pages = 1023–1029}}</ref>
 
<ref name="ldr14">{{Cite journal |doi = 10.1093/comjnl/bxr099|title = Evolutionary Automata: Expressiveness and Convergence of Evolutionary Computation|year = 2012|last1 = Burgin|first1 = M.|last2 = Eberbach|first2 = E.|journal = The Computer Journal|volume = 55|issue = 9|pages = 1023–1029}}</ref>
 +
 +
    
<ref name="ldr15">Eberbach E. (2002) On Expressiveness of Evolutionary Computation: Is EC Algorithmic?, Proc. 2002 World Congress on Computational Intelligence WCCI’2002, Honolulu, HI, 2002, 564-569.</ref>
 
<ref name="ldr15">Eberbach E. (2002) On Expressiveness of Evolutionary Computation: Is EC Algorithmic?, Proc. 2002 World Congress on Computational Intelligence WCCI’2002, Honolulu, HI, 2002, 564-569.</ref>
 +
 +
    
<ref name="ldr16">Eberbach, E. (2005) Toward a theory of evolutionary computation, BioSystems, v. 82, pp. 1-19.</ref>
 
<ref name="ldr16">Eberbach, E. (2005) Toward a theory of evolutionary computation, BioSystems, v. 82, pp. 1-19.</ref>
   −
<ref name="ldr17">{{Cite book |doi = 10.1109/CEC.2009.4983207|isbn = 978-1-4244-2958-5|chapter = Evolutionary automata as foundation of evolutionary computation: Larry Fogel was right|title = 2009 IEEE Congress on Evolutionary Computation|year = 2009|last1 = Eberbach|first1 = Eugene|last2 = Burgin|first2 = Mark|pages = 2149–2156|publisher=IEEE|s2cid = 2869386}}</ref>
+
 
 +
 
 +
<ref name="ldr17">{{Cite book |doi = 10.1109/CEC.2009.4983207|isbn = 978-1-4244-2958-5|chapter = Evolutionary automata as foundation of evolutionary computation: Larry Fogel was right|title = 2009 IEEE Congress on Evolutionary Computation|year = 2009|last1 = Eberbach|first1 = Eugene|last2 = Burgin|first2 = Mark|pages = 2149–2156|publisher=IEEE}}</ref>
 +
 
 +
 
    
<ref name="ldr18">Hopcroft, J.E., R. Motwani, and J.D. Ullman (2001) Introduction to Automata Theory, Languages, and Computation, Addison Wesley, Boston/San Francisco/New York</ref>
 
<ref name="ldr18">Hopcroft, J.E., R. Motwani, and J.D. Ullman (2001) Introduction to Automata Theory, Languages, and Computation, Addison Wesley, Boston/San Francisco/New York</ref>
 +
 +
    
}}
 
}}
第398行: 第683行:     
}}
 
}}
 +
 +
 +
 +
      第407行: 第696行:  
<br />
 
<br />
   −
< br/>
+
Br /  
 +
 
 +
 
          
[[Category:Evolutionary computation| ]]
 
[[Category:Evolutionary computation| ]]
 +
 +
    
[[Category:Evolution]]
 
[[Category:Evolution]]
153

个编辑

导航菜单