第52行: |
第52行: |
| 其中<math>x_1,...,x_n</math>分别是<math>X_1,...,X_n</math>的特定值,<math>P(x_1, ..., x_n)</math>是这些值产生交集时的概率,如果<math>P(x_1, ..., x_n)=0</math>则<math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math>定义为0。 | | 其中<math>x_1,...,x_n</math>分别是<math>X_1,...,X_n</math>的特定值,<math>P(x_1, ..., x_n)</math>是这些值产生交集时的概率,如果<math>P(x_1, ..., x_n)=0</math>则<math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math>定义为0。 |
| | | |
− | ==Properties== | + | == Properties 属性 == |
− | | |
− | ===Nonnegativity===
| |
| | | |
| + | ===Nonnegativity 非负性=== |
| The joint entropy of a set of random variables is a nonnegative number. | | The joint entropy of a set of random variables is a nonnegative number. |
− | | + | 一组随机变量的联合熵是一个非负数。 |
| :<math>\Eta(X,Y) \geq 0</math> | | :<math>\Eta(X,Y) \geq 0</math> |
| | | |
| :<math>\Eta(X_1,\ldots, X_n) \geq 0</math> | | :<math>\Eta(X_1,\ldots, X_n) \geq 0</math> |
| | | |
− | ===Greater than individual entropies=== | + | === Greater than individual entropies 大于单个熵=== |
| | | |
| The joint entropy of a set of variables is greater than or equal to the maximum of all of the individual entropies of the variables in the set. | | The joint entropy of a set of variables is greater than or equal to the maximum of all of the individual entropies of the variables in the set. |
| + | 一组变量的联合熵大于或等于该组变量的所有单个熵的最大值。 |
| | | |
| :<math>\Eta(X,Y) \geq \max \left[\Eta(X),\Eta(Y) \right]</math> | | :<math>\Eta(X,Y) \geq \max \left[\Eta(X),\Eta(Y) \right]</math> |
第71行: |
第71行: |
| \Bigl\{ \Eta\bigl(X_i\bigr) \Bigr\}</math> | | \Bigl\{ \Eta\bigl(X_i\bigr) \Bigr\}</math> |
| | | |
− | ===Less than or equal to the sum of individual entropies=== | + | === Less than or equal to the sum of individual entropies 小于或等于单个熵的总和=== |
| | | |
| The joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set. This is an example of [[subadditivity]]. This inequality is an equality if and only if <math>X</math> and <math>Y</math> are [[statistically independent]].<ref name=cover1991 />{{rp|30}} | | The joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set. This is an example of [[subadditivity]]. This inequality is an equality if and only if <math>X</math> and <math>Y</math> are [[statistically independent]].<ref name=cover1991 />{{rp|30}} |
| + | 一组变量的联合熵小于或等于该组变量各个熵的总和。这是次可加性的一个例子。即当且仅当<math>X</math>和<math>Y</math>在统计上独立时,该不等式才是等式。 |
| | | |
| :<math>\Eta(X,Y) \leq \Eta(X) + \Eta(Y)</math> | | :<math>\Eta(X,Y) \leq \Eta(X) + \Eta(Y)</math> |