更改

跳到导航 跳到搜索
删除91字节 、 2020年11月4日 (三) 15:38
无编辑摘要
第1行: 第1行: −
此词条暂由彩云小译翻译,翻译字数共345,未经人工整理和审校,带来阅读不便,请见谅。
+
此词条暂由Henry翻译。
    
'''Transfer entropy''' is a [[non-parametric statistics|non-parametric statistic]] measuring the amount of directed (time-asymmetric) transfer of [[information]] between two [[random process]]es.<ref>{{cite journal|last=Schreiber|first=Thomas|title=Measuring information transfer|journal=Physical Review Letters|date=1 July 2000|volume=85|issue=2|pages=461–464|doi=10.1103/PhysRevLett.85.461|pmid=10991308|arxiv=nlin/0001042|bibcode=2000PhRvL..85..461S}}</ref><ref name=Scholarpedia >{{cite encyclopedia |year= 2007 |title = Granger causality |volume = 2 |issue = 7 |pages = 1667 |last= Seth |first=Anil|encyclopedia=[[Scholarpedia]] |url=http://www.scholarpedia.org/article/Granger_causality|doi=10.4249/scholarpedia.1667 |bibcode=2007SchpJ...2.1667S|doi-access= free }}</ref><ref name=Schindler07>{{cite journal|last=Hlaváčková-Schindler|first=Katerina|author2=Palus, M |author3=Vejmelka, M |author4= Bhattacharya, J |title=Causality detection based on information-theoretic approaches in time series analysis|journal=Physics Reports|date=1 March 2007|volume=441|issue=1|pages=1–46|doi=10.1016/j.physrep.2006.12.004|bibcode=2007PhR...441....1H|citeseerx=10.1.1.183.1617}}</ref> Transfer entropy from a process ''X'' to another process ''Y'' is the amount of uncertainty reduced in future values of ''Y''  by knowing the past values of ''X'' given past values of ''Y''. More specifically, if  <math> X_t </math>  and  <math> Y_t </math>  for  <math> t\in \mathbb{N} </math>  denote two random processes and the amount of information is measured using [[Shannon's entropy]], the transfer entropy can be written as:
 
'''Transfer entropy''' is a [[non-parametric statistics|non-parametric statistic]] measuring the amount of directed (time-asymmetric) transfer of [[information]] between two [[random process]]es.<ref>{{cite journal|last=Schreiber|first=Thomas|title=Measuring information transfer|journal=Physical Review Letters|date=1 July 2000|volume=85|issue=2|pages=461–464|doi=10.1103/PhysRevLett.85.461|pmid=10991308|arxiv=nlin/0001042|bibcode=2000PhRvL..85..461S}}</ref><ref name=Scholarpedia >{{cite encyclopedia |year= 2007 |title = Granger causality |volume = 2 |issue = 7 |pages = 1667 |last= Seth |first=Anil|encyclopedia=[[Scholarpedia]] |url=http://www.scholarpedia.org/article/Granger_causality|doi=10.4249/scholarpedia.1667 |bibcode=2007SchpJ...2.1667S|doi-access= free }}</ref><ref name=Schindler07>{{cite journal|last=Hlaváčková-Schindler|first=Katerina|author2=Palus, M |author3=Vejmelka, M |author4= Bhattacharya, J |title=Causality detection based on information-theoretic approaches in time series analysis|journal=Physics Reports|date=1 March 2007|volume=441|issue=1|pages=1–46|doi=10.1016/j.physrep.2006.12.004|bibcode=2007PhR...441....1H|citeseerx=10.1.1.183.1617}}</ref> Transfer entropy from a process ''X'' to another process ''Y'' is the amount of uncertainty reduced in future values of ''Y''  by knowing the past values of ''X'' given past values of ''Y''. More specifically, if  <math> X_t </math>  and  <math> Y_t </math>  for  <math> t\in \mathbb{N} </math>  denote two random processes and the amount of information is measured using [[Shannon's entropy]], the transfer entropy can be written as:
153

个编辑

导航菜单