第238行: |
第238行: |
| :<math>I(X;Y,Z) = I(X;Z) + I(X;Y|Z)</math> | | :<math>I(X;Y,Z) = I(X;Z) + I(X;Y|Z)</math> |
| | | |
− | ==Multivariate mutual information== | + | == Multivariate mutual information 多元互信息 == |
| {{main|Multivariate mutual information}} | | {{main|Multivariate mutual information}} |
| The conditional mutual information can be used to inductively define a '''multivariate mutual information''' in a set- or [[Information theory and measure theory|measure-theoretic sense]] in the context of '''[[information diagram]]s'''. In this sense we define the multivariate mutual information as follows: | | The conditional mutual information can be used to inductively define a '''multivariate mutual information''' in a set- or [[Information theory and measure theory|measure-theoretic sense]] in the context of '''[[information diagram]]s'''. In this sense we define the multivariate mutual information as follows: |
| + | |
| + | 结合信息图中的集合或度量理论,可以用条件互信息来归纳定义多元互信息。其定义表达式如下: |
| + | |
| + | |
| :<math>I(X_1;\ldots;X_{n+1}) = I(X_1;\ldots;X_n) - I(X_1;\ldots;X_n|X_{n+1}),</math> | | :<math>I(X_1;\ldots;X_{n+1}) = I(X_1;\ldots;X_n) - I(X_1;\ldots;X_n|X_{n+1}),</math> |
− | where
| + | |
| + | |
| + | Where |
| + | 其中 |
| + | |
| + | |
| :<math>I(X_1;\ldots;X_n|X_{n+1}) = \mathbb{E}_{X_{n+1}} [D_{\mathrm{KL}}( P_{(X_1,\ldots,X_n)|X_{n+1}} \| P_{X_1|X_{n+1}} \otimes\cdots\otimes P_{X_n|X_{n+1}} )].</math> | | :<math>I(X_1;\ldots;X_n|X_{n+1}) = \mathbb{E}_{X_{n+1}} [D_{\mathrm{KL}}( P_{(X_1,\ldots,X_n)|X_{n+1}} \| P_{X_1|X_{n+1}} \otimes\cdots\otimes P_{X_n|X_{n+1}} )].</math> |
− | This definition is identical to that of [[interaction information]] except for a change in sign in the case of an odd number of random variables. A complication is that this multivariate mutual information (as well as the interaction information) can be positive, negative, or zero, which makes this quantity difficult to interpret intuitively. In fact, for <math>n</math> random variables, there are <math>2^n-1</math> degrees of freedom for how they might be correlated in an information-theoretic sense, corresponding to each non-empty subset of these variables. These degrees of freedom are bounded by various Shannon- and non-Shannon-type [[inequalities in information theory]]. | + | |
| + | |
| + | This definition is identical to that of [[interaction information]] except for a change in sign in the case of an odd number of random variables. A complication is that this multivariate mutual information (as well as the interaction information) can be positive, negative, or zero, which makes this quantity difficult to interpret intuitively. In fact, for <math>n</math> random variables, there are <math>2^n-1</math> degrees of freedom for how they might be correlated in an information-theoretic sense, corresponding to each non-empty subset of these variables. These degrees of freedom are bounded by various Shannon- and non-Shannon-type [[inequalities in information theory]]. |
| + | |
| + | 该定义与'''<font color="#ff8000"> 交互信息Interaction information</font>'''的定义相同,只是在随机数为奇数的情况下符号发生了变化。一个复杂的问题是,该多元互信息(以及交互信息)可以是正,负或零,这使得其数量难以直观地解释。实际上,对于n个随机变量,存在2n-1个自由度。那么如何在信息理论上将它们关联,并对应于这些变量的每个非空子集,就是解决问题的关键。特别是这些自由度受到信息论中各种香农和非香农不等式的制约。 |
| | | |
| ==References== | | ==References== |