Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe [[Quantum simulator|quantum simulation]] will be one of the most important applications of quantum computing.<ref>{{Cite journal |url=http://archive.wired.com/science/discoveries/news/2007/02/72734 |title=The Father of Quantum Computing |journal=Wired |first=Quinn |last=Norton |date=2007-02-15 }}</ref> Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a [[collider]].<ref>{{cite web |url=http://www.ias.edu/ias-letter/ambainis-quantum-computing |title=What Can We Do with a Quantum Computer? |first=Andris |last=Ambainis |date=Spring 2014 |publisher=Institute for Advanced Study}}</ref> | Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe [[Quantum simulator|quantum simulation]] will be one of the most important applications of quantum computing.<ref>{{Cite journal |url=http://archive.wired.com/science/discoveries/news/2007/02/72734 |title=The Father of Quantum Computing |journal=Wired |first=Quinn |last=Norton |date=2007-02-15 }}</ref> Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a [[collider]].<ref>{{cite web |url=http://www.ias.edu/ias-letter/ambainis-quantum-computing |title=What Can We Do with a Quantum Computer? |first=Andris |last=Ambainis |date=Spring 2014 |publisher=Institute for Advanced Study}}</ref> |