更改

跳到导航 跳到搜索
添加528字节 、 2020年11月5日 (四) 20:39
第426行: 第426行:  
由于化学和纳米技术依赖于对量子系统的理解,而这样的系统是不可能以有效的经典方式进行模拟的,许多人相信'''<font color="#ff8000"> 量子模拟</font>'''将是量子计算最重要的应用之一。'''<font color="#ff8000"> 量子模拟</font>'''也可以用来模拟原子和粒子在非正常条件下的行为,比如对撞机内部的反应。
 
由于化学和纳米技术依赖于对量子系统的理解,而这样的系统是不可能以有效的经典方式进行模拟的,许多人相信'''<font color="#ff8000"> 量子模拟</font>'''将是量子计算最重要的应用之一。'''<font color="#ff8000"> 量子模拟</font>'''也可以用来模拟原子和粒子在非正常条件下的行为,比如对撞机内部的反应。
   −
=== Quantum simulation ===
+
=== Quantum simulation 量子模拟===
    
{{Main|Quantum simulator}}
 
{{Main|Quantum simulator}}
    
Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe [[Quantum simulator|quantum simulation]] will be one of the most important applications of quantum computing.<ref>{{Cite journal |url=http://archive.wired.com/science/discoveries/news/2007/02/72734 |title=The Father of Quantum Computing |journal=Wired |first=Quinn |last=Norton |date=2007-02-15 }}</ref> Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a [[collider]].<ref>{{cite web |url=http://www.ias.edu/ias-letter/ambainis-quantum-computing |title=What Can We Do with a Quantum Computer? |first=Andris |last=Ambainis |date=Spring 2014 |publisher=Institute for Advanced Study}}</ref>
 
Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe [[Quantum simulator|quantum simulation]] will be one of the most important applications of quantum computing.<ref>{{Cite journal |url=http://archive.wired.com/science/discoveries/news/2007/02/72734 |title=The Father of Quantum Computing |journal=Wired |first=Quinn |last=Norton |date=2007-02-15 }}</ref> Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a [[collider]].<ref>{{cite web |url=http://www.ias.edu/ias-letter/ambainis-quantum-computing |title=What Can We Do with a Quantum Computer? |first=Andris |last=Ambainis |date=Spring 2014 |publisher=Institute for Advanced Study}}</ref>
 +
 +
由于化学和纳米技术依赖于对量子系统的理解,而这种系统不可能以经典的方式进行有效的模拟,许多人相信[[量子模拟器|量子模拟]]将是量子计算最重要的应用之一。量子模拟也可以用来模拟原子和粒子在异常条件下的行为,例如[[对撞机]]内部的反应。
    
Quantum annealing or Adiabatic quantum computation relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which is slowly evolved to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process.
 
Quantum annealing or Adiabatic quantum computation relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which is slowly evolved to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process.
   −
量子退火或绝热量子计算依赖于绝热定理进行计算。对于一个简单的哈密顿量,一个系统被放置在基态,这个哈密顿量慢慢演化成一个更复杂的哈密顿量,它的基态代表问题的解。绝热定理指出,如果演化足够慢,系统在整个演化过程中将始终处于基态。
+
'''<font color="#ff8000"> 量子退火或绝热量子计算</font>'''依赖于绝热定理进行计算。对于一个简单的'''<font color="#ff8000"> 哈密顿量</font>''',一个系统被放置在'''<font color="#ff8000"> 基态</font>''',这个'''<font color="#ff8000"> 哈密顿量</font>'''慢慢演化成一个更复杂的哈密顿量,它的基态代表问题的解。绝热定理指出,如果演化足够慢,系统在整个演化过程中将始终处于'''<font color="#ff8000"> 基态</font>'''。
 
  −
 
      
=== Quantum annealing and adiabatic optimization ===
 
=== Quantum annealing and adiabatic optimization ===
561

个编辑

导航菜单