更改

跳到导航 跳到搜索
删除404字节 、 2020年11月6日 (五) 12:28
无编辑摘要
第30行: 第30行:  
has a singularity at <math>x = 0</math>, where it seems to "explode" to <math>\pm\infty</math> and is hence not defined. The absolute value function <math>g(x) = |x|</math> also has a singularity at , since it is not differentiable there.
 
has a singularity at <math>x = 0</math>, where it seems to "explode" to <math>\pm\infty</math> and is hence not defined. The absolute value function <math>g(x) = |x|</math> also has a singularity at , since it is not differentiable there.
   −
有一个奇点在 < math > x = 0 </math > ,它似乎“爆炸”到 < math > pm infty </math > ,因此没有定义。绝对值函数 < math > g (x) = | x | </math > 也有一个奇点,因为它在那里是不可微的。
+
在x=0处有一个奇点,在这里它似乎“爆炸”到±∞,因此没有定义。绝对值函数g(x)=| x |在也有奇点,因为它在那里不可微。
      第37行: 第37行:     
The algebraic curve defined by <math>\{(x,y):y^3-x^2=0\}</math> in the <math>(x, y)</math> coordinate system has a singularity (called a cusp) at <math>(0, 0)</math>. For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory.
 
The algebraic curve defined by <math>\{(x,y):y^3-x^2=0\}</math> in the <math>(x, y)</math> coordinate system has a singularity (called a cusp) at <math>(0, 0)</math>. For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory.
 
+
在(x,y)坐标系中{(x,y):y3−x2=0}定义的代数曲线在(0,0)处有一个奇点(称为尖点)。代数奇点的多样性,参见代数几何中的奇异点。关于微分几何中的奇点,见奇点理论
代数曲线定义于 math > (x,y) : y ^ 3-x ^ 2 = 0} </math > (x,y) </math > 坐标系在 math > (0,0) </math > 上有一个奇点(叫做尖点)。关于代数几何的奇点,请参阅《非奇异。关于微分几何的奇点,请参阅《奇点理论。
            
==Real analysis==
 
==Real analysis==
 
+
实际分析
 
In [[real analysis]], singularities are either [[classification of discontinuities|discontinuities]], or discontinuities of the [[derivative]] (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: '''type&nbsp;I''', which has two subtypes, and '''type&nbsp;II''', which can also be divided into two subtypes (though usually is not).
 
In [[real analysis]], singularities are either [[classification of discontinuities|discontinuities]], or discontinuities of the [[derivative]] (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: '''type&nbsp;I''', which has two subtypes, and '''type&nbsp;II''', which can also be divided into two subtypes (though usually is not).
    
In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type&nbsp;I, which has two subtypes, and type&nbsp;II, which can also be divided into two subtypes (though usually is not).
 
In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type&nbsp;I, which has two subtypes, and type&nbsp;II, which can also be divided into two subtypes (though usually is not).
   −
在实际分析中,奇点要么是导数的不连续性,要么是导数的不连续性(有时也是高阶导数的不连续性)。有四种不连续性: i 型(有两个子类型)和 II 型(也可以分为两个子类型(虽然通常不是)。
+
在实际分析中,奇点要么是不连续的,要么是导数的不连续(有时也是高阶导数的不连续)。有四种不连续性:I型,有两种亚型;II型,也可分为两种亚型(尽管通常不是)。
      第56行: 第55行:  
To describe the way these two types of limits are being used, suppose that <math>f(x)</math> is a function of a real argument <math>x</math>, and for any value of its argument, say <math>c</math>, then the left-handed limit, <math>f(c^-)</math>, and the right-handed limit, <math>f(c^+)</math>, are defined by:
 
To describe the way these two types of limits are being used, suppose that <math>f(x)</math> is a function of a real argument <math>x</math>, and for any value of its argument, say <math>c</math>, then the left-handed limit, <math>f(c^-)</math>, and the right-handed limit, <math>f(c^+)</math>, are defined by:
   −
为了描述这两种类型的限制被使用的方式,假设 < math > f (x) </math > 是一个实参数的函数 < math > x </math > ,并且对于它的参数的任何值,比如 < math > c </math > ,那么左手限制 < math > f (c ^ -) </math > ,和右手限制 < math > f (c ^ +) </math,定义为:
+
为了描述这两种极限的使用方式,假设f(x)是实参x的函数,对于其自变量的任何值,比如c,则左极限f(c-)和右极限f(c+)的定义如下:
    
:<math>f(c^-) = \lim_{x \to c}f(x)</math>, constrained by <math>x < c</math> and
 
:<math>f(c^-) = \lim_{x \to c}f(x)</math>, constrained by <math>x < c</math> and
第78行: 第77行:  
The value <math>f(c^-)</math> is the value that the function <math>f(x)</math> tends towards as the value <math>x</math> approaches <math>c</math> from below, and the value <math>f(c^+)</math> is the value that the function <math>f(x)</math> tends towards as the value <math>x</math> approaches <math>c</math> from above, regardless of the actual value the function has at the point where <math>x = c</math>&nbsp;.
 
The value <math>f(c^-)</math> is the value that the function <math>f(x)</math> tends towards as the value <math>x</math> approaches <math>c</math> from below, and the value <math>f(c^+)</math> is the value that the function <math>f(x)</math> tends towards as the value <math>x</math> approaches <math>c</math> from above, regardless of the actual value the function has at the point where <math>x = c</math>&nbsp;.
   −
值 < math > f (c ^ -) </math > 是函数 < math > f (x) </math > 趋向于下面的值 < math > x </math > 接近 < math > c </math > ,值 < math > f (c ^ +) </math > 是函数 < math > f (x) </math > 趋向于上面的值 < math > x </math > 接近 math > c </math > ,而不管函数在数学上的实际值 < x = c </math > 。
+
值f(c-)是函数f(x)在值x从下面接近c时趋于的值,而值f(c+)是函数f(x)在值x从上接近c时趋向的值,而不管函数在x=c点处的实际值如何
      第98行: 第97行:  
does not tend towards anything as <math>x</math> approaches <math>c = 0</math>. The limits in this case are not infinite, but rather undefined: there is no value that <math>g(x)</math> settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity.
 
does not tend towards anything as <math>x</math> approaches <math>c = 0</math>. The limits in this case are not infinite, but rather undefined: there is no value that <math>g(x)</math> settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity.
   −
不倾向于做任何事情,因为。在这种情况下,限制不是无限的,而是未定义的: 没有一个值是 < math > g (x) </math > 的。借用复杂的分析,这有时被称为本质奇点。
+
不倾向于做任何事情,因为。在这种情况下,极限不是无限的,而是未定义的: 没有一个值是g (x)确定的。借用复杂的分析,这有时被称为本质奇点。
      第106行: 第105行:  
The possible cases at a given value <math>c</math> for the argument are as follows.
 
The possible cases at a given value <math>c</math> for the argument are as follows.
   −
参数在给定值 < math > c </math > 下的可能情况如下。
+
参数在给定值c下的可能情况如下。
    
* A '''point of continuity''' is a value of <math>c</math> for which <math>f(c^-) = f(c) = f(c^+)</math>, as one expects for a smooth function. All the values must be finite. If <math>c</math> is not a point of continuity, then a discontinuity occurs at <math>c</math>.
 
* A '''point of continuity''' is a value of <math>c</math> for which <math>f(c^-) = f(c) = f(c^+)</math>, as one expects for a smooth function. All the values must be finite. If <math>c</math> is not a point of continuity, then a discontinuity occurs at <math>c</math>.
153

个编辑

导航菜单