第25行: |
第25行: |
| Quantum computing began in the early 1980s, when physicist Paul Benioff proposed a quantum mechanical model of the Turing machine. Richard Feynman and Yuri Manin later suggested that a quantum computer had the potential to simulate things that a classical computer could not. In 1994, Peter Shor developed a quantum algorithm for factoring integers that had the potential to decrypt RSA-encrypted communications. Despite ongoing experimental progress since the late 1990s, most researchers believe that "fault-tolerant quantum computing [is] still a rather distant dream." In recent years, investment into quantum computing research has increased in both the public and private sector. On 23 October 2019, Google AI, in partnership with the U.S. National Aeronautics and Space Administration (NASA), claimed to have performed a quantum computation that is infeasible on any classical computer. | | Quantum computing began in the early 1980s, when physicist Paul Benioff proposed a quantum mechanical model of the Turing machine. Richard Feynman and Yuri Manin later suggested that a quantum computer had the potential to simulate things that a classical computer could not. In 1994, Peter Shor developed a quantum algorithm for factoring integers that had the potential to decrypt RSA-encrypted communications. Despite ongoing experimental progress since the late 1990s, most researchers believe that "fault-tolerant quantum computing [is] still a rather distant dream." In recent years, investment into quantum computing research has increased in both the public and private sector. On 23 October 2019, Google AI, in partnership with the U.S. National Aeronautics and Space Administration (NASA), claimed to have performed a quantum computation that is infeasible on any classical computer. |
| | | |
− | '''<font color="#ff8000"> 量子计算</font>'''始于20世纪80年代早期,当时物理学家'''<font color="#ff8000"> 保罗 · 贝尼奥夫Paul Benioff</font>'''提出了图灵机的量子力学模型。理查德 · 费曼和尤里 · 曼宁后来提出,量子计算机具有模拟传统计算机所不具备的潜力。1994年,Peter Shor 开发了一种量子算法,用于分解整数,这种算法有可能解密 rsa 加密的通信。尽管自20世纪90年代后期以来,实验取得了进展,但大多数研究人员认为,“容错量子计算机仍然是一个相当遥远的梦想。”近年来,量子计算研究的投资在公共和私营部门都有所增加。2019年10月23日,谷歌人工智能与美国宇航局合作,声称已经完成了在任何传统计算机上都不可能完成的'''<font color="#ff8000"> 量子计算</font>'''。 | + | '''<font color="#ff8000"> 量子计算</font>'''始于20世纪80年代早期,当时物理学家'''<font color="#ff8000"> 保罗 · 贝尼奥夫Paul Benioff</font>'''提出了'''<font color="#ff8000"> 图灵机Turing machine</font>'''的量子力学模型。'''<font color="#ff8000">理查德 · 费曼Richard Feynman和尤里 · 曼宁Yuri Manin</font>'''后来提出,量子计算机具有模拟传统计算机所不具备的潜力。1994年,Peter Shor 开发了一种量子算法,用于分解整数,这种算法有可能解密 rsa 加密的通信。尽管自20世纪90年代后期以来,实验取得了进展,但大多数研究人员认为,“容错量子计算机仍然是一个相当遥远的梦想。”近年来,量子计算研究的投资在公共和私营部门都有所增加。2019年10月23日,谷歌人工智能与'''<font color="#ff8000"> 美国宇航局U.S. National Aeronautics and Space Administration (NASA)</font>'''合作,声称已经完成了在任何传统计算机上都不可能完成的'''<font color="#ff8000"> 量子计算</font>'''。 |
| | | |
| | | |
第39行: |
第39行: |
| There are several models of quantum computing, including the quantum circuit model, quantum Turing machine, adiabatic quantum computer, one-way quantum computer, and various quantum cellular automata. The most widely used model is the quantum circuit. Quantum circuits are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. Qubits can be in a 1 or 0 quantum state, or they can be in a superposition of the 1 and 0 states. However, when qubits are measured the result of the measurement is always either a 0 or a 1; the probabilities of these two outcomes depend on the quantum state that the qubits were in immediately prior to the measurement. Computation is performed by manipulating qubits with quantum logic gates, which are somewhat analogous to classical logic gates. | | There are several models of quantum computing, including the quantum circuit model, quantum Turing machine, adiabatic quantum computer, one-way quantum computer, and various quantum cellular automata. The most widely used model is the quantum circuit. Quantum circuits are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. Qubits can be in a 1 or 0 quantum state, or they can be in a superposition of the 1 and 0 states. However, when qubits are measured the result of the measurement is always either a 0 or a 1; the probabilities of these two outcomes depend on the quantum state that the qubits were in immediately prior to the measurement. Computation is performed by manipulating qubits with quantum logic gates, which are somewhat analogous to classical logic gates. |
| | | |
− | '''<font color="#ff8000"> 量子计算</font>'''有几种模型,包括量子电路模型、量子图灵机、绝热量子计算机、单向量子计算机和各种量子细胞自动机。使用最广泛的模型是'''<font color="#ff8000"> 量子电路Quantum circuits </font>'''。量子电路是基于量子比特或'''<font color="#ff8000"> “量子比特”"qubit"</font>'''的,它在某种程度上类似于经典计算中的比特。'''<font color="#ff8000"> 量子比特</font>'''可以处于1或0的量子态,也可以处于1和0的叠加态。然而,当量子比特被测量时,测量结果总是0或1; 这两个结果的概率取决于量子比特在测量之前所处的量子状态。计算是通过'''<font color="#ff8000"> 量子逻辑门Quantum logic gates</font>'''操纵量子比特来完成的,这在某种程度上类似于经典逻辑门。 | + | '''<font color="#ff8000"> 量子计算</font>'''有几种模型,包括'''<font color="#ff8000">量子电路模型、量子图灵机、绝热量子计算机、单向量子计算机和各种量子细胞自动机</font>'''。使用最广泛的模型是'''<font color="#ff8000"> 量子电路Quantum circuits </font>'''。量子电路是基于量子比特或'''<font color="#ff8000"> “量子比特”"qubit"</font>'''的,它在某种程度上类似于经典计算中的'''<font color="#ff8000"> “比特”"bit"</font>'''。'''<font color="#ff8000"> 量子比特</font>'''可以处于1或0的量子态,也可以处于1和0的叠加态。然而,当量子比特被测量时,测量结果总是0或1; 这两个结果的概率取决于量子比特在测量之前所处的量子状态。计算是通过'''<font color="#ff8000"> 量子逻辑门Quantum logic gates</font>'''操纵量子比特来完成的,这在某种程度上类似于经典逻辑门。 |
| | | |
| | | |
第53行: |
第53行: |
| There are currently two main approaches to physically implementing a quantum computer: analog and digital. Analog approaches are further divided into quantum simulation, quantum annealing, and adiabatic quantum computation. Digital quantum computers use quantum logic gates to do computation. Both approaches use qubits. | | There are currently two main approaches to physically implementing a quantum computer: analog and digital. Analog approaches are further divided into quantum simulation, quantum annealing, and adiabatic quantum computation. Digital quantum computers use quantum logic gates to do computation. Both approaches use qubits. |
| | | |
− | 目前实现量子计算机主要有两种方法: 模拟和数字。模拟方法进一步分为量子模拟、量子退火模拟和绝热量子计算。数字量子计算机使用量子逻辑门进行计算。两种方法都使用量子位。 | + | 目前实现量子计算机主要有两种方法: 模拟和数字。模拟方法进一步分为'''<font color="#ff8000">量子模拟、量子退火模拟和绝热量子计算</font>'''。数字量子计算机使用'''<font color="#ff8000"> 量子逻辑门</font>'''进行计算。两种方法都使用量子比特。 |
| | | |
| | | |
第67行: |
第67行: |
| Any computational problem that can be solved by a classical computer can also, in principle, be solved by a quantum computer. Conversely, quantum computers obey the Church–Turing thesis; that is, any computational problem that can be solved by a quantum computer can also be solved by a classical computer. While this means that quantum computers provide no additional advantages over classical computers in terms of computability, they do in theory enable the design of algorithms for certain problems that have significantly lower time complexities than known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of time—a feat known as "quantum supremacy." The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory. | | Any computational problem that can be solved by a classical computer can also, in principle, be solved by a quantum computer. Conversely, quantum computers obey the Church–Turing thesis; that is, any computational problem that can be solved by a quantum computer can also be solved by a classical computer. While this means that quantum computers provide no additional advantages over classical computers in terms of computability, they do in theory enable the design of algorithms for certain problems that have significantly lower time complexities than known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of time—a feat known as "quantum supremacy." The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory. |
| | | |
− | 任何可以由经典计算机解决的计算问题问题,原则上也可以由量子计算机解决。相反,量子计算机遵循 Church-Turing 理论; 也就是说,任何可以由量子计算机解决的计算问题问题也可以由经典计算机解决。虽然这意味着量子计算机在可计算性方面没有比传统计算机提供额外的优势,但在理论上,它们确实能够为某些问题设计算法,这些问题的时间复杂性明显低于已知的经典算法。值得注意的是,人们相信量子计算机能够快速解决某些问题,而这些问题是任何传统计算机都无法在任何可行的时间内解决的——这一壮举被称为“量子优势”研究量子计算机问题的计算复杂性被称为量子复杂性理论。
| + | 任何可以由经典计算机解决的'''<font color="#ff8000"> 可计算问题</font>''',原则上也可以由量子计算机解决。相反,量子计算机遵循 Church-Turing 理论; 也就是说,任何可以由量子计算机解决的计算问题也可以由经典计算机解决。虽然这意味着量子计算机在可计算性方面没有比传统计算机提供额外的优势,但在理论上,它们确实能够为某些问题设计算法,这些问题的时间复杂性明显低于已知的经典算法。值得注意的是,人们相信量子计算机能够快速解决某些问题,而这些问题是任何传统计算机都无法在可行的时间内解决的——这一壮举被称为'''<font color="#ff8000"> “量子优势”"quantum supremacy"</font>'''。研究量子计算机问题的计算复杂性被称为'''<font color="#ff8000"> 量子复杂性理论Quantum complexity theory</font>'''。 |
| | | |
| | | |