更改

跳到导航 跳到搜索
添加20字节 、 2020年11月11日 (三) 21:36
无编辑摘要
第53行: 第53行:  
If  is a linear function of  and its derivatives, then the PDE is called linear. Common examples of linear PDEs include the heat equation, the wave equation, Laplace's equation, Helmholtz equation, Klein–Gordon equation, and Poisson's equation.
 
If  is a linear function of  and its derivatives, then the PDE is called linear. Common examples of linear PDEs include the heat equation, the wave equation, Laplace's equation, Helmholtz equation, Klein–Gordon equation, and Poisson's equation.
   −
如果{{mvar|f}}是函数{{math|''u''}}及其导数的线性函数,则偏微分方程称为线性函数。线性偏微分方程的常见例子包括热方程、波动方程、拉普拉斯方程、亥姆霍兹方程方程、克莱因-高登方程和泊松方程。
+
如果 {{mvar|f}}是函数{{math|''u''}} 及其导数的线性函数,则偏微分方程称为线性函数。线性偏微分方程的常见例子包括热方程、波动方程、拉普拉斯方程、亥姆霍兹方程方程、克莱因-高登方程和泊松方程。
      第77行: 第77行:  
This relation implies that the function  is independent of . However, the equation gives no information on the function's dependence on the variable . Hence the general solution of this equation is
 
This relation implies that the function  is independent of . However, the equation gives no information on the function's dependence on the variable . Hence the general solution of this equation is
   −
这意味着函数{{math|''u''(''x'',''y'')}}独立于{{mvar|x}}的。然而,这个方程没有给出关于函数和自变量的相关性的信息。因此,这个方程的通解是
+
这意味着函数 {{math|''u''(''x'',''y'')}} 独立于 {{mvar|x}} 的。然而,这个方程没有给出关于函数和自变量的相关性的信息。因此,这个方程的通解是
      第91行: 第91行:  
where  is an arbitrary function of . The analogous ordinary differential equation is
 
where  is an arbitrary function of . The analogous ordinary differential equation is
   −
其中{{mvar|f}}是{{mvar|y}}的任意函数。
+
其中, {{mvar|f}} 是 {{mvar|y}} 的任意函数。
    
类似的常微分方程是:
 
类似的常微分方程是:
第123行: 第123行:  
where  is any constant value. These two examples illustrate that general solutions of ordinary differential equations (ODEs) involve arbitrary constants, but solutions of PDEs involve arbitrary functions.
 
where  is any constant value. These two examples illustrate that general solutions of ordinary differential equations (ODEs) involve arbitrary constants, but solutions of PDEs involve arbitrary functions.
   −
这里,{{mvar|c}}是一个任意常量。
+
这里,{{mvar|c}} 是一个任意常量。
    
这两个例子说明常微分方程的一般解包含任意常数,但偏微分方程的解包含任意函数。
 
这两个例子说明常微分方程的一般解包含任意常数,但偏微分方程的解包含任意函数。
第133行: 第133行:  
A solution of a PDE is generally not unique; additional conditions must generally be specified on the boundary of the region where the solution is defined. For instance, in the simple example above, the function  can be determined if  is specified on the line  0}}.
 
A solution of a PDE is generally not unique; additional conditions must generally be specified on the boundary of the region where the solution is defined. For instance, in the simple example above, the function  can be determined if  is specified on the line  0}}.
   −
偏微分方程的解一般不是唯一的; 附加条件一般必须在定义解的区域边界上定义。例如,在上面的简单示例中,如果在{{math|''x'' {{=}} 0}}时确定了{{mvar|u}}的值,则可以确定该函数{{math|''f''(''y'')}}。
+
偏微分方程的解一般不是唯一的; 一般必须在定义解的区域边界上定义附加条件。 例如,在上面的简单示例中,如果在 {{math|''x'' {{=}} 0}} 时确定了 {{mvar|u}} 的值,则可以确定该函数 {{math|''f''(''y'')}}。
    
== Existence and uniqueness ==
 
== Existence and uniqueness ==
66

个编辑

导航菜单