更改

跳到导航 跳到搜索
删除14字节 、 2020年11月18日 (三) 23:15
第59行: 第59行:  
is a smooth function. A trajectory of this system is some smooth function <math>x(t)</math> with values in <math>\mathbb{R}^2</math> which satisfies this differential equation. Such a trajectory is called closed (or periodic) if it is not constant but returns to its starting point, i.e. if there exists some <math>t_0>0</math> such that <math>x(t+t_0)=x(t)</math> for all <math>t\in\mathbb{R}</math>. An orbit is the image of a trajectory, a subset of <math>\mathbb{R}^2</math>. A closed orbit, or cycle, is the image of a closed trajectory. A limit cycle is a cycle which is the limit set of some other trajectory.
 
is a smooth function. A trajectory of this system is some smooth function <math>x(t)</math> with values in <math>\mathbb{R}^2</math> which satisfies this differential equation. Such a trajectory is called closed (or periodic) if it is not constant but returns to its starting point, i.e. if there exists some <math>t_0>0</math> such that <math>x(t+t_0)=x(t)</math> for all <math>t\in\mathbb{R}</math>. An orbit is the image of a trajectory, a subset of <math>\mathbb{R}^2</math>. A closed orbit, or cycle, is the image of a closed trajectory. A limit cycle is a cycle which is the limit set of some other trajectory.
   −
是一个平滑函数。这个系统的轨迹是满足这个微分方程的光滑函数。如果这个轨迹不是恒定的,而是返回到它的起始点,那么这个轨迹称为闭合(或周期)轨迹。如果存在一些 <math>t_0>0</math>有<math>x(t+t_0)=x(t)</math>对于所有的<math>t\in\mathbb{R}</math>。轨道是轨道的图像,是 < math > mathbb { r } ^ 2 </math > 的子集。一个闭合轨道,或循环,是一个闭合轨迹的图像。极限环是一个循环,它是其他轨迹的极限集。
+
是一个平滑函数。这个系统的轨迹是满足这个微分方程的光滑函数。如果这个轨迹不是恒定的,而是返回到它的起始点,那么这个轨迹称为闭合(或周期)轨迹。如果存在一些 <math>t_0>0</math>有<math>x(t+t_0)=x(t)</math>对于所有的<math>t\in\mathbb{R}</math>。轨道是轨迹的图像,是<math>mathbb{r}^2</math>的子集。一个闭合轨道,或循环,是一个闭合轨迹的图像。极限环是一个循环,它是其他轨迹的极限集。
 
  −
 
      
==Properties==
 
==Properties==
307

个编辑

导航菜单