更改

跳到导航 跳到搜索
删除3字节 、 2020年11月18日 (三) 23:29
无编辑摘要
第100行: 第100行:  
==Finding limit cycles==
 
==Finding limit cycles==
 
寻找极限环
 
寻找极限环
 +
 
Every closed trajectory contains within its interior a [[stationary point]] of the system, i.e. a point <math>p</math> where <math>V(p)=0</math>. The [[Bendixson–Dulac theorem]] and the [[Poincaré–Bendixson theorem]] predict the absence or existence, respectively, of limit cycles of two-dimensional nonlinear dynamical systems.
 
Every closed trajectory contains within its interior a [[stationary point]] of the system, i.e. a point <math>p</math> where <math>V(p)=0</math>. The [[Bendixson–Dulac theorem]] and the [[Poincaré–Bendixson theorem]] predict the absence or existence, respectively, of limit cycles of two-dimensional nonlinear dynamical systems.
   第110行: 第111行:  
==Open problems==
 
==Open problems==
 
未解决的问题
 
未解决的问题
 +
 
Finding limit cycles, in general, is a very difficult problem. The number of limit cycles of a polynomial differential equation in the plane is the main object of the second part of [[Hilbert's sixteenth problem]]. It is unknown, for instance, whether there is any system <math>x'=V(x)</math> in the plane where both components of <math>V</math> are quadratic polynomials of the two variables, such that the system has more than 4 limit cycles.
 
Finding limit cycles, in general, is a very difficult problem. The number of limit cycles of a polynomial differential equation in the plane is the main object of the second part of [[Hilbert's sixteenth problem]]. It is unknown, for instance, whether there is any system <math>x'=V(x)</math> in the plane where both components of <math>V</math> are quadratic polynomials of the two variables, such that the system has more than 4 limit cycles.
   第119行: 第121行:     
== Applications ==
 
== Applications ==
Applications
+
应用
 +
 
 
[[File:Hopfbifurcation.png|thumb|400px|Examples of limit cycles branching from fixed points near [[Hopf bifurcation]]. Trajectories in red, stable structures in dark blue, unstable structures in light blue. The parameter choice determines the occurrence and stability of limit cycles.]]
 
[[File:Hopfbifurcation.png|thumb|400px|Examples of limit cycles branching from fixed points near [[Hopf bifurcation]]. Trajectories in red, stable structures in dark blue, unstable structures in light blue. The parameter choice determines the occurrence and stability of limit cycles.]]
  
307

个编辑

导航菜单