In the 1980s, much work was done on the average difficulty of solving NP-complete problems—both exactly and approximately. At that time, computational complexity theory was at its height, and it was widely believed that if a problem turned out to be NP-complete, then there was little chance of being able to work with the problem in a practical situation. However, it became increasingly clear that this is not always the case{{cn|reason=passive, no source|date=August 2019}}, and some authors claimed that general asymptotic results are often unimportant for typical problems arising in practice.<ref>{{cite book|last=Wolfram|first=Stephen|title=A New Kind of Science|publisher=Wolfram Media, Inc.|year=2002|page=[https://archive.org/details/newkindofscience00wolf/page/1143 1143]|isbn=978-1-57955-008-0|url-access=registration|url=https://archive.org/details/newkindofscience00wolf/page/1143}}</ref> | In the 1980s, much work was done on the average difficulty of solving NP-complete problems—both exactly and approximately. At that time, computational complexity theory was at its height, and it was widely believed that if a problem turned out to be NP-complete, then there was little chance of being able to work with the problem in a practical situation. However, it became increasingly clear that this is not always the case{{cn|reason=passive, no source|date=August 2019}}, and some authors claimed that general asymptotic results are often unimportant for typical problems arising in practice.<ref>{{cite book|last=Wolfram|first=Stephen|title=A New Kind of Science|publisher=Wolfram Media, Inc.|year=2002|page=[https://archive.org/details/newkindofscience00wolf/page/1143 1143]|isbn=978-1-57955-008-0|url-access=registration|url=https://archive.org/details/newkindofscience00wolf/page/1143}}</ref> |