第231行: |
第231行: |
| If we look at the incidence matrix, we see that the sum of each column is equal to 2. This is because each edge has a vertex connected to each end. | | If we look at the incidence matrix, we see that the sum of each column is equal to 2. This is because each edge has a vertex connected to each end. |
| | | |
− | 观察关联矩阵,我们就会发现,每一列的和总是等于2的。这是因为每条边都有一个顶点连接到每个端点。
| + | 观察关联矩阵,我们就会发现,因为每条边都有一个顶点连接到每个端点,所以每一列的和总是等于2。 |
| | | |
| | | |
第239行: |
第239行: |
| The incidence matrix of a directed graph is a matrix B where n and m are the number of vertices and edges respectively, such that if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention). | | The incidence matrix of a directed graph is a matrix B where n and m are the number of vertices and edges respectively, such that if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention). |
| | | |
− | '''<font color="#32CD32">有向图的关联矩阵是一个矩阵''B'',其中 ''n'' 和 ''m'' 分别是顶点和边的数目,这样如果边 e<sub>j</sub> 离开顶点 v<sub>i</sub>,为1,如果它进入顶点 v<sub>i</sub> ,为0(许多作者使用相反的符号约定)。</font>The incidence matrix of a directed graph is a matrix B where n and m are the number of vertices and edges respectively, such that if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention). | + | '''<font color="#32CD32">有向图的关联矩阵是一个矩阵''B'',其中 ''n'' 和 ''m'' 分别是顶点和边的数目,这样当边 e<sub>j</sub> 离开顶点 v<sub>i</sub>,时为1,当它进入顶点 v<sub>i</sub> ,时为0(许多作者使用相反的符号约定)。</font>The incidence matrix of a directed graph is a matrix B where n and m are the number of vertices and edges respectively, such that if the edge e<sub>j</sub> leaves vertex v<sub>i</sub>, 1 if it enters vertex v<sub>i</sub> and 0 otherwise (many authors use the opposite sign convention). |
| | | |
| | | |
第290行: |
第290行: |
| The integral cycle space of a graph is equal to the null space of its oriented incidence matrix, viewed as a matrix over the integers or real or complex numbers. The binary cycle space is the null space of its oriented or unoriented incidence matrix, viewed as a matrix over the two-element field. | | The integral cycle space of a graph is equal to the null space of its oriented incidence matrix, viewed as a matrix over the integers or real or complex numbers. The binary cycle space is the null space of its oriented or unoriented incidence matrix, viewed as a matrix over the two-element field. |
| | | |
− | 图的'''<font color="#ff8000">圈空间 Cycle Space</font>'''等j价于其有向关联矩阵的零空间,可以看作是整数或实数或复数上的矩阵。二元循环空间是有向或无向关联矩阵的零空间,也可以看作是二元场上的矩阵。 | + | 图的'''<font color="#ff8000">圈空间 Cycle Space</font>'''等价于其有向关联矩阵的零空间,可以看作是整数或实数或复数上的矩阵。二元循环空间是有向或无向关联矩阵的零空间,也可以看作是二元域上的矩阵。 |
| | | |
| ==Signed and bidirected graphs 有符号双向图 == | | ==Signed and bidirected graphs 有符号双向图 == |