更改

跳到导航 跳到搜索
添加6字节 、 2020年11月19日 (四) 02:40
第327行: 第327行:  
The incidence matrix of an incidence structure C is a  matrix B (or its transpose), where p and q are the number of points and lines respectively, such that  if the point p<sub>i</sub> and line L<sub>j</sub> are incident and 0 otherwise. In this case, the incidence matrix is also a biadjacency matrix of the Levi graph of the structure. As there is a hypergraph for every Levi graph, and vice versa, the incidence matrix of an incidence structure describes a hypergraph.
 
The incidence matrix of an incidence structure C is a  matrix B (or its transpose), where p and q are the number of points and lines respectively, such that  if the point p<sub>i</sub> and line L<sub>j</sub> are incident and 0 otherwise. In this case, the incidence matrix is also a biadjacency matrix of the Levi graph of the structure. As there is a hypergraph for every Levi graph, and vice versa, the incidence matrix of an incidence structure describes a hypergraph.
   −
关联结构 ''C'' 的关联矩阵是一个矩阵''B'' (或其转置) ,其中 ''p'' 和 ''q'' 分别是点和线的数目,如果点 p<sub>i</sub>和线L<sub>j</sub> 是关联的,就为1,否则为0。在这种情况下,关联矩阵也是'''<font color="#ff8000">Levi图 Levi Graph</font>''' 的双邻接矩阵的结构。由于每个Levi图都有一个超图,反之亦然。关联结构的关联矩阵描述了一个超图。
+
关联结构 ''C'' 的关联矩阵是一个矩阵''B'' (或其转置) ,其中 ''p'' 和 ''q'' 分别是点和线的数目,如果点 p<sub>i</sub>和线L<sub>j</sub> 是关联的,就为1,否则为0。在这种情况下,关联矩阵也是'''<font color="#ff8000">Levi图 Levi Graph</font>''' 的双邻接矩阵的结构。每个Levi图都有一个超图,反之亦然,因此关联结构的关联矩阵就可以描述一个超图。
    
==Finite geometries 有限几何==
 
==Finite geometries 有限几何==
526

个编辑

导航菜单