Waves, from radio waves to sound waves to those on a pond from throwing a stone, expand outward from their source, even though the wave equations accommodate solutions of convergent waves as well as radiative ones. This arrow has been reversed in carefully worked experiments that created convergent waves, so this arrow probably follows from the thermodynamic arrow in that meeting the conditions to produce a convergent wave requires more order than the conditions for a radiative wave. Put differently, the probability for initial conditions that produce a convergent wave is much lower than the probability for initial conditions that produce a radiative wave. In fact, normally a radiative wave increases entropy, while a convergent wave decreases it,<!-- ref></ref --> making the latter contradictory to the second law of thermodynamics in usual circumstances. | Waves, from radio waves to sound waves to those on a pond from throwing a stone, expand outward from their source, even though the wave equations accommodate solutions of convergent waves as well as radiative ones. This arrow has been reversed in carefully worked experiments that created convergent waves, so this arrow probably follows from the thermodynamic arrow in that meeting the conditions to produce a convergent wave requires more order than the conditions for a radiative wave. Put differently, the probability for initial conditions that produce a convergent wave is much lower than the probability for initial conditions that produce a radiative wave. In fact, normally a radiative wave increases entropy, while a convergent wave decreases it,<!-- ref></ref --> making the latter contradictory to the second law of thermodynamics in usual circumstances. |