更改

跳到导航 跳到搜索
删除14,146字节 、 2020年11月21日 (六) 23:56
无编辑摘要
第1行: 第1行: −
本词条已由[[用户:Qige96|Ricky]]、[[用户:Paradoxist-Paradoxer|Paradoxist@Paradoxer]]审校。
+
{{#seo:
 
+
|keywords=自复制,生物细胞,计算机
{{Use dmy dates|date=April 2019|cs1-dates=y}}
+
|description=一个动力系统任何能产生与自身相同或相似的复制体的的行为
 
+
}}
 
   
[[Image:DNA chemical structure.svg|thumb|right|200px|DNA分子结构 ]]
 
[[Image:DNA chemical structure.svg|thumb|right|200px|DNA分子结构 ]]
   
'''自复制 Self-replication'''是一个动力系统任何能产生与自身相同或相似的复制体的的行为。生物细胞,在适当的环境下,通过细胞分裂进行繁殖。在细胞分裂过程中,DNA 被复制,并在生殖过程中传递给后代。生物病毒可以复制,但只能通过感染过程控制细胞的生殖机制。有害的朊病毒蛋白可以通过将正常的蛋白质转化为反常形式来复制。<ref>{{cite news|url=http://news.bbc.co.uk/1/hi/health/8435320.stm |title='Lifeless' prion proteins are 'capable of evolution' |work=BBC News |date=2010-01-01 |accessdate=2013-10-22}}</ref>计算机病毒利用计算机上已有的硬件和软件进行复制。自我复制机器人学一直是一个研究领域,也是科幻小说中的一个兴趣主题。任何不能完美复制的自复制机制(变异)都会经历遗传变异,产生自身的变异体。这些变异体将受到自然选择的影响,因为有些变异会比其他变异更好地在当前环境中生存,并将超越他们。
 
'''自复制 Self-replication'''是一个动力系统任何能产生与自身相同或相似的复制体的的行为。生物细胞,在适当的环境下,通过细胞分裂进行繁殖。在细胞分裂过程中,DNA 被复制,并在生殖过程中传递给后代。生物病毒可以复制,但只能通过感染过程控制细胞的生殖机制。有害的朊病毒蛋白可以通过将正常的蛋白质转化为反常形式来复制。<ref>{{cite news|url=http://news.bbc.co.uk/1/hi/health/8435320.stm |title='Lifeless' prion proteins are 'capable of evolution' |work=BBC News |date=2010-01-01 |accessdate=2013-10-22}}</ref>计算机病毒利用计算机上已有的硬件和软件进行复制。自我复制机器人学一直是一个研究领域,也是科幻小说中的一个兴趣主题。任何不能完美复制的自复制机制(变异)都会经历遗传变异,产生自身的变异体。这些变异体将受到自然选择的影响,因为有些变异会比其他变异更好地在当前环境中生存,并将超越他们。
       
==综述==
 
==综述==
   
===理论===
 
===理论===
  −
{{See also|Von Neumann universal constructor}}
      
[[约翰·冯·诺依曼 John_von_Neumann]]的早期研究<ref name=Hixon_vonNeumann>{{cite book|last=von Neumann|first=John|title=The Hixon Symposium|year=1948|location=Pasadena, California|pages=1–36}}</ref>表明复制因子有几个部分:
 
[[约翰·冯·诺依曼 John_von_Neumann]]的早期研究<ref name=Hixon_vonNeumann>{{cite book|last=von Neumann|first=John|title=The Hixon Symposium|year=1948|location=Pasadena, California|pages=1–36}}</ref>表明复制因子有几个部分:
第38行: 第33行:  
*'''<font color="#ff8000">自组装系统 Self-assembling systems</font>'''自动将它们各种已完成的部分组装起来。这种系统的简单例子已经在宏观尺度得到展示。
 
*'''<font color="#ff8000">自组装系统 Self-assembling systems</font>'''自动将它们各种已完成的部分组装起来。这种系统的简单例子已经在宏观尺度得到展示。
   −
  −
The design space for machine replicators is very broad. A comprehensive study<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.9.htm | date = 2004 | accessdate = 29 June 2013 | last1 = Freitas | first1 = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - Freitas-Merkle Map of the Kinematic Replicator Design Space (2003–2004)}}</ref> to date by [[Robert Freitas]] and [[Ralph Merkle]] has identified 137 design dimensions grouped into a dozen separate categories, including: (1) Replication Control, (2) Replication Information, (3) Replication Substrate, (4) Replicator Structure, (5) Passive Parts, (6) Active Subunits, (7) Replicator Energetics, (8) Replicator Kinematics, (9) Replication Process, (10) Replicator Performance, (11) Product Structure, and (12) Evolvability.
  −
  −
The design space for machine replicators is very broad. A comprehensive study to date by Robert Freitas and Ralph Merkle has identified 137 design dimensions grouped into a dozen separate categories, including: (1) Replication Control, (2) Replication Information, (3) Replication Substrate, (4) Replicator Structure, (5) Passive Parts, (6) Active Subunits, (7) Replicator Energetics, (8) Replicator Kinematics, (9) Replication Process, (10) Replicator Performance, (11) Product Structure, and (12) Evolvability.
      
机械复制机的设计空间非常广阔。迄今为止,罗伯特·弗雷塔斯 Robert Freitas和拉尔夫·默克尔 Ralph Merkle的综合研究<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.9.htm | date = 2004 | accessdate = 29 June 2013 | last1 = Freitas | first1 = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - Freitas-Merkle Map of the Kinematic Replicator Design Space (2003–2004)}}</ref> 已经确定了137个设计维度并将其分为十几个独立的类别,包括:
 
机械复制机的设计空间非常广阔。迄今为止,罗伯特·弗雷塔斯 Robert Freitas和拉尔夫·默克尔 Ralph Merkle的综合研究<ref>{{cite web|url = http://www.MolecularAssembler.com/KSRM/5.1.9.htm | date = 2004 | accessdate = 29 June 2013 | last1 = Freitas | first1 = Robert | last2 = Merkle | first2 = Ralph | title = Kinematic Self-Replicating Machines - Freitas-Merkle Map of the Kinematic Replicator Design Space (2003–2004)}}</ref> 已经确定了137个设计维度并将其分为十几个独立的类别,包括:
:(1)复制控制,
+
:(1)复制控制 Replication Control,
:(2)复制信息,
+
:(2)复制信息 Replication Information,
:(3)复制基质,
+
:(3)复制基质 Replication Substrate,
:(4)复制机结构,
+
:(4)复制机结构  Replicator Structure,
:(5)被动部件,
+
:(5)被动部件 Passive Parts,
:(6)主动子单元,
+
:(6)主动子单元 Active Subunits,
:(7)复制机能量学,
+
:(7)复制机能量学 Replicator Energetics,
:(8)复制机运动学,
+
:(8)复制机运动学 Replicator Kinematics,
:(9)复制过程,
+
:(9)复制过程 Replication Process,
:(10)复制机性能,
+
:(10)复制机性能 Replicator Performance,
:(11)产物结构,
+
:(11)产物结构 Product Structure,
:(12)可演化性。
+
:(12)可演化性 Evolvability。
      −
===一种自复制的计算机程序===
+
===一种自复制的计算机程序——Quine===
   −
{{Main|Quine (computing)}}
+
在[[计算机科学]]中,quine是一种自我复制的计算机程序,当执行时,输出自己的代码。例如,利用Python语言编写的一个 quine 如下:
 
  −
 
  −
 
  −
在[[计算机科学]]中,quine是一种自我复制的计算机程序,当执行时,输出自己的代码。例如,利用Python语言编写的一个 quine 如下:
      
:<code>a='a=%r;print(a%%a)';print(a%a)</code>
 
:<code>a='a=%r;print(a%%a)';print(a%a)</code>
第76行: 第63行:     
===自复制式平铺===
 
===自复制式平铺===
  −
{{See also|Self-similarity}}
  −
  −
In [[geometry]] a self-replicating tiling is a tiling pattern in which several [[congruence (geometry)|congruent]] tiles may be joined together to form a larger tile that is similar to the original.  This is an aspect of the field of study known as [[tessellation]].  The "sphinx" [[hexiamond]] is the only known self-replicating [[pentagon]].<ref>For an image that does not show how this replicates, see: Eric W. Weisstein. "Sphinx." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/Sphinx.html http://mathworld.wolfram.com/Sphinx.html]</ref>  For example, four such [[concave polygon|concave]] pentagons can be joined together to make one with twice the dimensions.<ref>For further illustrations, see [http://www.geoaustralia.com/italian/Sphinx/Guide.html Teaching TILINGS / TESSELLATIONS with Geo Sphinx]</ref> [[Solomon W. Golomb]] coined the term [[rep-tiles]] for self-replicating tilings.
  −
  −
In geometry a self-replicating tiling is a tiling pattern in which several congruent tiles may be joined together to form a larger tile that is similar to the original.  This is an aspect of the field of study known as tessellation.  The "sphinx" hexiamond is the only known self-replicating pentagon.  For example, four such concave pentagons can be joined together to make one with twice the dimensions. Solomon W. Golomb coined the term rep-tiles for self-replicating tilings.
      
在几何学中,'''<font color="#ff8000">自复制式平铺 self-replicating tiling</font>'''是一种平铺方法,其中几个全等的图形可以连接在一起,形成一个较大的类似于原来的图形。这属于一个被称为'''密铺'''的研究领域。 称为“斯芬克斯 sphinx”的六块多形组 hexiamond是唯一已知的自我复制的五边形<ref>For an image that does not show how this replicates, see: Eric W. Weisstein. "Sphinx." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/Sphinx.html http://mathworld.wolfram.com/Sphinx.html]</ref> 。例如,4个图中的凹五边形可以一起组成一个和原形状相似但是2倍大小的凹五边形。所罗门·格伦布 Solomon W. Golomb <ref>For further illustrations, see [http://www.geoaustralia.com/italian/Sphinx/Guide.html Teaching TILINGS / TESSELLATIONS with Geo Sphinx]</ref>为这样的自我复制纹样创造了 rep-tiles 这个术语。
 
在几何学中,'''<font color="#ff8000">自复制式平铺 self-replicating tiling</font>'''是一种平铺方法,其中几个全等的图形可以连接在一起,形成一个较大的类似于原来的图形。这属于一个被称为'''密铺'''的研究领域。 称为“斯芬克斯 sphinx”的六块多形组 hexiamond是唯一已知的自我复制的五边形<ref>For an image that does not show how this replicates, see: Eric W. Weisstein. "Sphinx." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/Sphinx.html http://mathworld.wolfram.com/Sphinx.html]</ref> 。例如,4个图中的凹五边形可以一起组成一个和原形状相似但是2倍大小的凹五边形。所罗门·格伦布 Solomon W. Golomb <ref>For further illustrations, see [http://www.geoaustralia.com/italian/Sphinx/Guide.html Teaching TILINGS / TESSELLATIONS with Geo Sphinx]</ref>为这样的自我复制纹样创造了 rep-tiles 这个术语。
第119行: 第100行:     
==机械中的自复制==
 
==机械中的自复制==
  −
{{Main|Self-replicating machine}}
      
机器人学领域的一项活动就是机器的自复制。由于所有机器人(至少在现代)都有相当数量的相同特性,一个自复制机器人(或者可能是一群机器人)需要做到以下几点:
 
机器人学领域的一项活动就是机器的自复制。由于所有机器人(至少在现代)都有相当数量的相同特性,一个自复制机器人(或者可能是一群机器人)需要做到以下几点:
   −
*获得构建材料
+
#获得构建材料
 
+
#制造新零件,包括最小的零件和思维组件
*制造新零件,包括最小的零件和思维组件
+
#提供一个稳定一致的动力源
 
+
#为新成员编程
*提供一个稳定一致的动力源
+
#改正子代产物的任何错误
 
  −
*为新成员编程
  −
 
  −
*改正子代产物的任何错误
        第141行: 第116行:       −
关于与工业时代相关的机械复制的详细文章,请参阅'''<font color="#ff8000">大规模生产 mass production</font>'''
+
关于与工业时代相关的机械复制的详细文章,请参阅[[大规模生产 mass production]]
       
==研究领域==
 
==研究领域==
 +
以下领域已开展的与自复制相关的研究:
   −
 
+
* 生物学研究自然复制和复制因子及其相互作用。这些可以成为避免自我复制机器设计困难的重要指导。
{{refimprove section|date=August 2017}}
+
* 在化学领域,自我复制研究通常特指关于一组特定的分子如何在这个分子集群(通常是系统化学领域的一部分)中共同作用以复制对方<ref>{{cite book |author=Moulin, Giuseppone |title=Constitutional Dynamic Chemistry |volume=322 |pages=87–105 |year=2011|publisher=Springer|doi=10.1007/128_2011_198|pmid=21728135 |series=Topics in Current Chemistry |isbn=978-3-642-28343-7 |chapter=Dynamic Combinatorial Self-Replicating Systems }}</ref>。
 
+
* 模因论 Memetics研究思想及其在人类文化中的传播。模因 Meme只需要很少的材料,因此在理论上与病毒相似,通常被称为病毒性的。
 
+
* 分子纳米技术是关于制造纳米级的组装工具。如果没有自我复制,分子机器的资本和组装成本就会变得不可思议的高。
以下领域已开展的与自复制相关的研究:
+
* 空间资源: 美国航天局资助了一些设计研究,通过开发自我复制机制来开采空间资源。这些设计大多数包括计算机控制的可复制自己的机器。
 
+
* 计算机安全:许多计算机安全问题是由感染计算机的自复制计算机程序造成的——计算机蠕虫和计算机病毒。
 
  −
 
  −
 
  −
 
  −
* [[Biology]] studies natural replication and replicators, and their interaction.  These can be an important guide to avoid design difficulties in self-replicating machinery.
  −
*Biology studies natural replication and replicators, and their interaction. These can be an important guide to avoid design difficulties in self-replicating machinery.
  −
 
  −
生物学研究自然复制和复制因子及其相互作用。这些可以成为避免自我复制机器设计困难的重要指导。
  −
 
  −
 
  −
 
  −
* In [[Chemistry]] self-replication studies are typically about how a specific set of molecules can act together to replicate each other within the set <ref>{{cite book |author=Moulin, Giuseppone |title=Constitutional Dynamic Chemistry |volume=322 |pages=87–105 |year=2011|publisher=Springer|doi=10.1007/128_2011_198|pmid=21728135 |series=Topics in Current Chemistry |isbn=978-3-642-28343-7 |chapter=Dynamic Combinatorial Self-Replicating Systems }}</ref> (often part of [[Systems chemistry]] field).
  −
 
  −
*In Chemistry self-replication studies are typically about how a specific set of molecules can act together to replicate each other within the set [15] (often part of Systems chemistry field).
  −
 
  −
* 在化学领域,自我复制研究通常特指关于一组特定的分子如何在这个分子集群(通常是系统化学领域的一部分)中共同作用以复制对方[15]
  −
 
  −
 
  −
 
  −
* [[Meme]]tics studies ideas and how they propagate in human culture.  Memes require only small amounts of material, and therefore have theoretical similarities to [[virus]]es and are often described as [[virus|viral]].
  −
 
  −
* Memetics studies ideas and how they propagate in human culture. Memes require only small amounts of material, and therefore have theoretical similarities to viruses and are often described as viral.
  −
* 模因论研究思想及其在人类文化中的传播。模因只需要很少的材料,因此在理论上与病毒相似,通常被称为病毒性的。
  −
 
  −
 
  −
 
  −
 
  −
* [[Nanotechnology]] or more precisely, [[molecular nanotechnology]] is concerned with making [[Nanotechnology|nano]] scale [[assembler (nanotechnology)|assemblers]].  Without self-replication, capital and assembly costs of molecular machines become impossibly large.
  −
 
  −
* Nanotechnology or more precisely, molecular nanotechnology is concerned with making nano scale assemblers. Without self-replication, capital and assembly costs of molecular machines become impossibly large.
  −
 
  −
* 纳米技术或者更准确地说,分子纳米技术是关于制造纳米级的组装工具。如果没有自我复制,分子机器的资本和组装成本就会变得不可思议的高。
  −
 
  −
 
  −
 
  −
 
  −
* Space resources: NASA has sponsored a number of design studies to develop self-replicating mechanisms to mine space resources.  Most of these designs include computer-controlled machinery that copies itself.
  −
* Space resources: NASA has sponsored a number of design studies to develop self-replicating mechanisms to mine space resources. Most of these designs include computer-controlled machinery that copies itself.
  −
 
  −
* 空间资源: 美国航天局资助了一些设计研究,通过开发自我复制机制来开采空间资源。这些设计大多数包括计算机控制的可复制自己的机器。
  −
 
  −
 
  −
 
  −
* [[Computer security]]: Many computer security problems are caused by self-reproducing computer programs that infect computers — [[computer worm]]s and [[computer virus]]es.
  −
*Computer security: Many computer security problems are caused by self-reproducing computer programs that infect computers — computer worms and computer viruses.
  −
 
  −
* 计算机安全: 许多计算机安全问题是由感染计算机的自复制计算机程序造成的——计算机蠕虫和计算机病毒。
  −
 
  −
 
  −
 
  −
* In [[parallel computing]], it takes a long time to manually load a new program on every node of a large [[computer cluster]] or [[distributed computing]] system. Automatically loading new programs using [[mobile agent]]s can save the system administrator a lot of time and give users their results much quicker, as long as they don't get out of control.
  −
 
  −
*In parallel computing, it takes a long time to manually load a new program on every node of a large computer cluster or distributed computing system. Automatically loading new programs using mobile agents can save the system administrator a lot of time and give users their results much quicker, as long as they don't get out of control.
  −
 
   
* 在并行计算中,在大型计算机集群或分布式计算系统的每个节点上手动加载一个新程序需要很长时间。使用移动代理程序自动加载新程序可以节省系统管理员大量的时间,并且可以更快地为用户提供结果,只要他们不失去控制。
 
* 在并行计算中,在大型计算机集群或分布式计算系统的每个节点上手动加载一个新程序需要很长时间。使用移动代理程序自动加载新程序可以节省系统管理员大量的时间,并且可以更快地为用户提供结果,只要他们不失去控制。
   −
==In industry  在工业界==
+
==工业==
 
+
===太空探索和制造业 Space exploration and manufacturing===
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
===Space exploration and manufacturing 太空探索和制造业===
  −
 
  −
 
  −
 
  −
The goal of self-replication in space systems is to exploit large amounts of matter with a low launch mass.  For example, an [[autotroph]]ic self-replicating machine could cover a moon or planet with solar cells, and beam the power to the Earth using microwaves.  Once in place, the same machinery that built itself could also produce raw materials or manufactured objects, including transportation systems to ship the products. [[Von Neumann Probe|Another model]] of self-replicating machine would copy itself through the galaxy and universe, sending information back.
  −
 
  −
The goal of self-replication in space systems is to exploit large amounts of matter with a low launch mass.  For example, an autotrophic self-replicating machine could cover a moon or planet with solar cells, and beam the power to the Earth using microwaves.  Once in place, the same machinery that built itself could also produce raw materials or manufactured objects, including transportation systems to ship the products. Another model of self-replicating machine would copy itself through the galaxy and universe, sending information back.
      
太空系统中自复制的目标是利用低发射质量的大量物质。例如,一个自养自复制机械可以用太阳能电池覆盖月球或行星,并通过微波将能量传送到地球。一旦就位,自己建造的同样的机器也可以生产原材料或制成品,包括运输产品的运输系统。另一个自复制机械模型会在星系和宇宙中复制自己,把信息传回来。
 
太空系统中自复制的目标是利用低发射质量的大量物质。例如,一个自养自复制机械可以用太阳能电池覆盖月球或行星,并通过微波将能量传送到地球。一旦就位,自己建造的同样的机器也可以生产原材料或制成品,包括运输产品的运输系统。另一个自复制机械模型会在星系和宇宙中复制自己,把信息传回来。
   −
  −
  −
  −
  −
In general, since these systems are autotrophic, they are the most difficult and complex known replicators.  They are also thought to be the most hazardous, because they do not require any inputs from human beings in order to reproduce.
  −
  −
In general, since these systems are autotrophic, they are the most difficult and complex known replicators.  They are also thought to be the most hazardous, because they do not require any inputs from human beings in order to reproduce.
      
一般来说,由于这些系统是自养的,他们是已知最困难和复杂的复制因子。它们也被认为是最危险的复制因子,因为它们不需要人类的任何投入来繁殖。
 
一般来说,由于这些系统是自养的,他们是已知最困难和复杂的复制因子。它们也被认为是最危险的复制因子,因为它们不需要人类的任何投入来繁殖。
       +
一个关于太空中复制因子的经典理论研究是1980年由 NASA 的罗伯特·弗雷塔斯 Robert Freitas 编辑的关于自养铿锵复制因子的研究。<ref>[[Wikisource:Advanced Automation for Space Missions]]</ref>
       +
大部分的设计研究都关注于采用一个简单、灵活的化学系统来处理月球表面的风化层,以及复制因子所需要的元素比率和从风化层中获得的元素比率之间的差异。限制元素是'''氯 Chlorine''',它是处理风化层以获得铝的一个必不可少的元素。氯在月球的风化层中非常罕见,通过投入适量的氯,可以保证更快的生殖速度。
   −
A classic theoretical study of replicators in space is the 1980 [[NASA]] study of autotrophic clanking replicators, edited by [[Robert Freitas]].<ref>[[Wikisource:Advanced Automation for Space Missions]]</ref>
  −
  −
A classic theoretical study of replicators in space is the 1980 NASA study of autotrophic clanking replicators, edited by Robert Freitas.
  −
  −
一个关于太空中复制因子的经典理论研究是1980年由 NASA 的罗伯特·弗雷塔斯(Robert Freitas)编辑的关于自养铿锵复制因子的研究。
  −
  −
  −
  −
  −
  −
Much of the design study was concerned with a simple, flexible chemical system for processing lunar [[regolith]], and the differences between the ratio of elements needed by the replicator, and the ratios available in regolith.  The limiting element was [[Chlorine]], an essential element to process regolith for [[Aluminium]].  Chlorine is very rare in lunar regolith, and a substantially faster rate of reproduction could be assured by importing modest amounts.
  −
  −
Much of the design study was concerned with a simple, flexible chemical system for processing lunar regolith, and the differences between the ratio of elements needed by the replicator, and the ratios available in regolith.  The limiting element was Chlorine, an essential element to process regolith for Aluminium.  Chlorine is very rare in lunar regolith, and a substantially faster rate of reproduction could be assured by importing modest amounts.
  −
  −
大部分的设计研究都关注于采用一个简单、灵活的化学系统来处理月球表面的风化层,以及复制因子所需要的元素比率和从风化层中获得的元素比率之间的差异。限制元素是氯,它是处理风化层以获得铝的一个必不可少的元素。氯在月球的风化层中非常罕见,通过投入适量的氯,可以保证更快的生殖速度。
  −
  −
  −
  −
  −
  −
The reference design specified small computer-controlled electric carts running on rails.  Each cart could have a simple hand or a small bull-dozer shovel, forming a basic [[robot]].
  −
  −
The reference design specified small computer-controlled electric carts running on rails.  Each cart could have a simple hand or a small bull-dozer shovel, forming a basic robot.
      
参考设计采用了小型计算机控制的在轨道上运行的电动车。每个推车可以有一个简单的手或一个小型推土机铲,形成一个基本的机器人。
 
参考设计采用了小型计算机控制的在轨道上运行的电动车。每个推车可以有一个简单的手或一个小型推土机铲,形成一个基本的机器人。
       +
电力将由支撑在支柱上的“天篷 canopy”状的太阳能电池提供。其他的机器可以在天篷下面运转。
   −
  −
  −
Power would be provided by a "canopy" of [[solar cell]]s supported on pillars.  The other machinery could run under the canopy.
  −
  −
Power would be provided by a "canopy" of solar cells supported on pillars.  The other machinery could run under the canopy.
  −
  −
电力将由支撑在支柱上的“天篷”状的太阳能电池提供。其他的机器可以在天篷下面运转。
  −
  −
  −
  −
  −
  −
A "[[casting]] [[robot]]" would use a robotic arm with a few sculpting tools to make [[plaster]] [[molding (process)|mold]]s.  Plaster molds are easy to make, and make precise parts with good surface finishes.  The robot would then cast most of the parts either from non-conductive molten rock ([[basalt]]) or purified metals.  An [[electricity|electric]] [[oven]] melted the materials.
  −
  −
A "casting robot" would use a robotic arm with a few sculpting tools to make plaster molds.  Plaster molds are easy to make, and make precise parts with good surface finishes.  The robot would then cast most of the parts either from non-conductive molten rock (basalt) or purified metals.  An electric oven melted the materials.
      
一个“铸造机器人”将使用一个机械手臂和一些雕刻工具来制作石膏模具。石膏模具易于制作,而且能够生产表面光洁度好且精密的零件。然后,机器人将用非导电熔岩(玄武岩)或纯金属铸造大部分零件。它内部的电炉可将这些材料熔化。
 
一个“铸造机器人”将使用一个机械手臂和一些雕刻工具来制作石膏模具。石膏模具易于制作,而且能够生产表面光洁度好且精密的零件。然后,机器人将用非导电熔岩(玄武岩)或纯金属铸造大部分零件。它内部的电炉可将这些材料熔化。
       +
他们提出了一个探索性的、更为复杂的“芯片工厂 chip factory”来生产计算机和电子系统,但设计师们还表示,将这些芯片像“维生素”一样从地球运输出去,可能会被证明是可行的。
    +
===分子制造业 Molecular manufacturing===
 +
纳米技术学家尤其相信,在人类设计出一种纳米尺度的自复制组装器之前,他们的工作很可能无法达到成熟的状态[http://www.MolecularAssembler.com/KSRM/4.11.3.htm]。
      −
A speculative, more complex "chip factory" was specified to produce the computer and electronic systems, but the designers also said that it might prove practical to ship the chips from Earth as if they were "vitamins".
+
这些系统比自养系统简单得多,因为它们可被提供纯净的原料和能源。它们不需要再生这些材料。这种区别是关于分子制造是否可行的一些争论的根源。许多权威认为这是不可能的,他们明确地引证了复杂自养自复制系统的资料;而许多认同这种可能性的权威人士清楚地引用了已经被证明的更简单的自组装系统的资料。与此同时,2003年的一项实验展示了一个乐高积木自主机器人,它能够按照预先设定的轨道,从外部提供的4个组件开始,精确地组装出自己的复制品。[http://www.MolecularAssembler.com/KSRM/3.23.4.htm].
 
  −
A speculative, more complex "chip factory" was specified to produce the computer and electronic systems, but the designers also said that it might prove practical to ship the chips from Earth as if they were "vitamins".
  −
 
  −
他们提出了一个探索性的、更为复杂的“芯片工厂”来生产计算机和电子系统,但设计师们还表示,将这些芯片像“维生素”一样从地球运输出去,可能会被证明是可行的。
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
===Molecular manufacturing  分子制造===
  −
 
  −
 
  −
 
  −
{{Main|Molecular nanotechnology#Replicating nanorobots}}
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
 
  −
[[Nanotechnology|Nanotechnologists]] in particular believe that their work will likely fail to reach a state of maturity until human beings design a self-replicating [[assembler (nanotechnology)|assembler]] of [[nanometer]] dimensions [http://www.MolecularAssembler.com/KSRM/4.11.3.htm].
  −
 
  −
Nanotechnologists in particular believe that their work will likely fail to reach a state of maturity until human beings design a self-replicating assembler of nanometer dimensions [http://www.MolecularAssembler.com/KSRM/4.11.3.htm].
  −
 
  −
纳米技术学家尤其相信,在人类设计出一种纳米尺度的自复制组装器之前,他们的工作很可能无法达到成熟的状态。 Molecularassembler.com/ksrm/4.11.3.htm.
  −
 
  −
 
  −
 
  −
 
  −
 
  −
These systems are substantially simpler than autotrophic systems, because they are provided with purified feedstocks and energy.  They do not have to reproduce them. This distinction is at the root of some of the controversy about whether [[molecular manufacturing]] is possible or not.  Many authorities who find it impossible are clearly citing sources for complex autotrophic self-replicating systems.  Many of the authorities who find it possible are clearly citing sources for much simpler self-assembling systems, which have been demonstrated.  In the meantime, a [[Lego]]-built autonomous robot able to follow a pre-set track and assemble an exact copy of itself, starting from four externally provided components, was demonstrated experimentally in 2003 [http://www.MolecularAssembler.com/KSRM/3.23.4.htm].
  −
 
  −
These systems are substantially simpler than autotrophic systems, because they are provided with purified feedstocks and energy.  They do not have to reproduce them. This distinction is at the root of some of the controversy about whether molecular manufacturing is possible or not.  Many authorities who find it impossible are clearly citing sources for complex autotrophic self-replicating systems.  Many of the authorities who find it possible are clearly citing sources for much simpler self-assembling systems, which have been demonstrated.  In the meantime, a Lego-built autonomous robot able to follow a pre-set track and assemble an exact copy of itself, starting from four externally provided components, was demonstrated experimentally in 2003 [http://www.MolecularAssembler.com/KSRM/3.23.4.htm].
  −
 
  −
这些系统比自养系统简单得多,因为它们可被提供纯净的原料和能源。它们不需要再生这些材料。这种区别是关于分子制造是否可行的一些争论的根源。许多权威认为这是不可能的,他们明确地引证了复杂自养自复制系统的资料;而许多认同这种可能性的权威人士清楚地引用了已经被证明的更简单的自组装系统的资料。与此同时,2003年的一项实验展示了一个乐高积木自主机器人,它能够按照预先设定的轨道,从外部提供的4个组件开始,精确地组装出自己的复制品。 Molecularassembler.com/ksrm/3.23.4.htm.
     −
  −
  −
  −
  −
Merely exploiting the replicative abilities of existing cells is insufficient, because of limitations in the process of [[protein biosynthesis]] (also see the listing for [[RNA]]).
  −
  −
Merely exploiting the replicative abilities of existing cells is insufficient, because of limitations in the process of protein biosynthesis (also see the listing for RNA).
      
仅仅利用现有细胞的复制能力是不够的,因为蛋白质的生物合成过程中存在局限性。
 
仅仅利用现有细胞的复制能力是不够的,因为蛋白质的生物合成过程中存在局限性。
   −
What is required is the rational design of an entirely novel replicator with a much wider range of synthesis capabilities.
  −
  −
What is required is the rational design of an entirely novel replicator with a much wider range of synthesis capabilities.
      
我们需要的是合理设计一种具有更广泛合成能力的全新复制因子。
 
我们需要的是合理设计一种具有更广泛合成能力的全新复制因子。
       +
2011年,纽约大学的科学家们开发出了可自复制的人造结构,这一过程有产生新型材料的潜力。他们已经证明,这种结构不仅可以复制像细胞 DNA 或 RNA 这样的分子,而且可以复制能够呈现许多不同形态、具有许多不同功能特征、并与许多不同类型的化学物种相关联的离散结构。<ref>{{cite journal | doi = 10.1038/nature10500 | last1 = Wang | first1 = Tong | last2 = Sha | first2 = Ruojie | last3 = Dreyfus | first3 = Rémi | last4 = Leunissen | first4 = Mirjam E. | last5 = Maass | first5 = Corinna | last6 = Pine | first6 = David J. | last7 = Chaikin | first7 = Paul M. | last8 = Seeman | first8 = Nadrian C. | year = 2011 | title = Self-replication of information-bearing nanoscale patterns | journal = Nature | volume = 478 | issue = 7368 | pages = 225–228 | pmid=21993758 | pmc=3192504}}</ref><ref>{{cite web | url = https://www.sciencedaily.com/releases/2011/10/111012132651.htm | title = Self-replication process holds promise for production of new materials. | date = 17 October 2011 | website = Science Daily | accessdate=17 October 2011}}</ref>
      −
 
+
有关假设的自我复制系统的其他化学基础的讨论,请参阅[[替代生物化学 alternative biochemistry]]
In 2011, New York University scientists have developed artificial structures that can self-replicate, a process that has the potential to yield new types of materials.  They have demonstrated that it is possible to replicate not just molecules like cellular DNA or RNA, but discrete structures that could in principle assume many different shapes, have many different functional features, and be associated with many different types of chemical species.<ref>{{cite journal | doi = 10.1038/nature10500 | last1 = Wang | first1 = Tong | last2 = Sha | first2 = Ruojie | last3 = Dreyfus | first3 = Rémi | last4 = Leunissen | first4 = Mirjam E. | last5 = Maass | first5 = Corinna | last6 = Pine | first6 = David J. | last7 = Chaikin | first7 = Paul M. | last8 = Seeman | first8 = Nadrian C. | year = 2011 | title = Self-replication of information-bearing nanoscale patterns | journal = Nature | volume = 478 | issue = 7368 | pages = 225–228 | pmid=21993758 | pmc=3192504}}</ref><ref>{{cite web | url = https://www.sciencedaily.com/releases/2011/10/111012132651.htm | title = Self-replication process holds promise for production of new materials. | date = 17 October 2011 | website = Science Daily | accessdate=17 October 2011}}</ref>
  −
 
  −
In 2011, New York University scientists have developed artificial structures that can self-replicate, a process that has the potential to yield new types of materials.  They have demonstrated that it is possible to replicate not just molecules like cellular DNA or RNA, but discrete structures that could in principle assume many different shapes, have many different functional features, and be associated with many different types of chemical species.
  −
 
  −
2011年,纽约大学的科学家们开发出了可自复制的人造结构,这一过程有产生新型材料的潜力。他们已经证明,这种结构不仅可以复制像细胞 DNA 或 RNA 这样的分子,而且可以复制能够呈现许多不同形态、具有许多不同功能特征、并与许多不同类型的化学物种相关联的离散结构。
  −
 
  −
 
  −
 
  −
 
  −
 
  −
For a discussion of other chemical bases for hypothetical self-replicating systems, see [[alternative biochemistry]].
  −
 
  −
For a discussion of other chemical bases for hypothetical self-replicating systems, see alternative biochemistry.
  −
 
  −
有关假设的自我复制系统的其他化学基础的讨论,请参阅替代生物化学。
        第406行: 第212行:     
{{refend}}
 
{{refend}}
 +
----
 +
本中文词条由[[用户:Qige96|Ricky]]翻译,[[用户:Paradoxist-Paradoxer|Paradoxist-Paradoxer]]审校,[[用户:薄荷|薄荷]]欢迎在讨论页面留言。
 +
 +
'''本词条内容源自公开资料,遵守 CC3.0协议。'''
7,129

个编辑

导航菜单