更改

跳到导航 跳到搜索
删除333字节 、 2020年11月22日 (日) 17:24
无编辑摘要
第1行: 第1行: −
此词条暂由Henry翻译。此词条由Miyasaki审校
+
{{#seo:
 
+
|keywords=自适应系统,生态系统,拓扑实践
 
+
|description=是一组相互作用或相互依存的实体,形成一个能够共同响应环境的变化或相互作用部分的变化的综合整体。
'''适应系统 adaptive system'''是一组相互作用或相互依存的实体,它们或真实或抽象,形成一个能够共同响应环境的变化或相互作用部分的变化的综合整体,类似于生物学中持续的生理稳态或进化适应。'''反馈循环'''代表了适应系统的一个关键特征,例如生态系统和个体有机体;或者在人类世界中的社区、组织和家庭。
+
}}
 +
'''自适应系统 adaptive system'''是一组相互作用或相互依存的实体,它们或真实或抽象,形成一个能够共同响应环境的变化或相互作用部分的变化的综合整体,类似于生物学中持续的生理稳态或进化适应。'''反馈循环'''代表了适应系统的一个关键特征,例如生态系统和个体有机体;或者在人类世界中的社区、组织和家庭。
       
'''人工自适应系统 Artificial adaptive systems'''包括具有控制系统的机器人,这些机器人利用[[负反馈]]来维持想要的状态。
 
'''人工自适应系统 Artificial adaptive systems'''包括具有控制系统的机器人,这些机器人利用[[负反馈]]来维持想要的状态。
        第40行: 第40行:       −
==自动调节系统的优点==
+
==自适应系统的优点==
    
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力的历史”。自调节系统最重要的特性之一是它能“适应混乱的边缘”或避免混乱的能力。实际上来讲,通过朝着[[混沌边缘 edge of chaos]]出发但是不走的太远,领导者就可以在避免灾难的情况下自发地行动。Complexity期刊2009年3/4月一期的一篇文章进一步解释了自我调节系统的使用和现实意义。<ref>Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008</ref>物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中。<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=Hubler|first2=A.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J Phys Chem A|volume=113|issue=1|pages=19–22|doi=10.1021/jp804420g|pmid=19072712|year=2009|bibcode=2009JPCA..113...19W}}</ref>
 
在自适应系统中,参数变化缓慢,没有优先值。然而,在一个自调整系统中,参数值“取决于系统动力的历史”。自调节系统最重要的特性之一是它能“适应混乱的边缘”或避免混乱的能力。实际上来讲,通过朝着[[混沌边缘 edge of chaos]]出发但是不走的太远,领导者就可以在避免灾难的情况下自发地行动。Complexity期刊2009年3/4月一期的一篇文章进一步解释了自我调节系统的使用和现实意义。<ref>Hübler, A. & Wotherspoon, T.: "Self-Adjusting Systems Avoid Chaos". Complexity. 14(4), 8 – 11. 2008</ref>物理学家已经证明,对混沌边缘的适应几乎发生在所有具有反馈的系统中。<ref>{{cite journal|last1=Wotherspoon|first1=T.|last2=Hubler|first2=A.|title=Adaptation to the edge of chaos with random-wavelet feedback|journal=J Phys Chem A|volume=113|issue=1|pages=19–22|doi=10.1021/jp804420g|pmid=19072712|year=2009|bibcode=2009JPCA..113...19W}}</ref>
第48行: 第48行:     
How do various types of adaptations interact in a living system? ''Practopoiesis,'' a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which [[autopoiesis]] of the entire ''organism'' or a ''cell'' occurs through a hierarchy of [[allopoiesis|allopoietic]] interactions among ''components''.This is possible because the components are organized into a [[poiesis|poietic]] hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
 
How do various types of adaptations interact in a living system? ''Practopoiesis,'' a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which [[autopoiesis]] of the entire ''organism'' or a ''cell'' occurs through a hierarchy of [[allopoiesis|allopoietic]] interactions among ''components''.This is possible because the components are organized into a [[poiesis|poietic]] hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
  −
How do various types of adaptations interact in a living system? Practopoiesis, a term due to its originator Danko Nikolić, is a reference to a hierarchy of adaptation mechanisms answering this question. The adaptive hierarchy forms a kind of a self-adjusting system in which autopoiesis of the entire organism or a cell occurs through a hierarchy of allopoietic interactions among components. This is possible because the components are organized into a poietic hierarchy: adaptive actions of one component result in creation of another component. The theory proposes that living systems exhibit a hierarchy of a total of four such adaptive poietic operations:
      
在一个生命系统中,各种类型的适应性是如何相互作用的?'''拓扑实践 Practopoiesis'''这个术语源于它的发明者 Danko nikoli,指向了能回答这个问题的一个适应机制层次结构。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分<ref name=Nikolic2015>{{cite journal|title=Practopoiesis: Or how life fosters a mind. |author=Danko Nikolić|date=2015|doi=10.1016/j.jtbi.2015.03.003|pmid = 25791287|volume=373|journal=Journal of Theoretical Biology|pages=40–61|arxiv=1402.5332}}</ref>之间的异体生成相互作用而发生的。这之所以可能是因为组件被组织成一个极端层次结构:一个组件的自适应操作导致另一个组件的创建。该理论提出,生命系统展示了一个由四个这样的适应性极化操作组成的层级结构:
 
在一个生命系统中,各种类型的适应性是如何相互作用的?'''拓扑实践 Practopoiesis'''这个术语源于它的发明者 Danko nikoli,指向了能回答这个问题的一个适应机制层次结构。这种适应性层次结构形成了一种自我调节系统,其中整个生物体或细胞的自创生是通过各组分<ref name=Nikolic2015>{{cite journal|title=Practopoiesis: Or how life fosters a mind. |author=Danko Nikolić|date=2015|doi=10.1016/j.jtbi.2015.03.003|pmid = 25791287|volume=373|journal=Journal of Theoretical Biology|pages=40–61|arxiv=1402.5332}}</ref>之间的异体生成相互作用而发生的。这之所以可能是因为组件被组织成一个极端层次结构:一个组件的自适应操作导致另一个组件的创建。该理论提出,生命系统展示了一个由四个这样的适应性极化操作组成的层级结构:
第62行: 第60行:     
随着层级结构向更高级别的组织发展,适应的速度也在加快。进化是最慢的,最后的细胞功能是最快的。最终,实践拓扑学挑战当前的神经科学学说,认为心理活动主要发生在稳态,非生物水平上。也就是说,意识和想法从快速的稳态机制中产生,从而控制了细胞功能。这与人们普遍认为的思考是神经活动的同义词(也就是说,与第四级的“最终细胞功能”)形成了鲜明对比。
 
随着层级结构向更高级别的组织发展,适应的速度也在加快。进化是最慢的,最后的细胞功能是最快的。最终,实践拓扑学挑战当前的神经科学学说,认为心理活动主要发生在稳态,非生物水平上。也就是说,意识和想法从快速的稳态机制中产生,从而控制了细胞功能。这与人们普遍认为的思考是神经活动的同义词(也就是说,与第四级的“最终细胞功能”)形成了鲜明对比。
         
每一个较慢的层次包含的知识比较快的层次包含的知识更一般性; 例如,基因包含的一般知识比无生殖机制多,而无生殖机制又比细胞功能包含更多的一般知识。这种知识的层次结构使得无生命层次能够直接激活概念,而这些概念是意识出现的最基本的原料。
 
每一个较慢的层次包含的知识比较快的层次包含的知识更一般性; 例如,基因包含的一般知识比无生殖机制多,而无生殖机制又比细胞功能包含更多的一般知识。这种知识的层次结构使得无生命层次能够直接激活概念,而这些概念是意识出现的最基本的原料。
  −
  −
  −
        第100行: 第93行:  
* {{cite journal  | last = Martin H. | first = Jose Antonio. |author2 = Javier de Lope; Darío Maravall | title = Adaptation, Anticipation and Rationality in Natural and Artificial Systems: Computational Paradigms Mimicking Nature  | journal = Natural Computing  | volume = 8 | issue = 4  | pages = 757–775  | date = 2009 | doi  =  10.1007/s11047-008-9096-6  
 
* {{cite journal  | last = Martin H. | first = Jose Antonio. |author2 = Javier de Lope; Darío Maravall | title = Adaptation, Anticipation and Rationality in Natural and Artificial Systems: Computational Paradigms Mimicking Nature  | journal = Natural Computing  | volume = 8 | issue = 4  | pages = 757–775  | date = 2009 | doi  =  10.1007/s11047-008-9096-6  
 
}}
 
}}
  −
  −
        第112行: 第102行:        +
----
 +
本中文词条由[[用户:Henry|Henry]]参与编译, [[用户:Miyasaki|Miyasaki]]审校,[[用户:薄荷|薄荷]]编辑,欢迎在讨论页面留言。
   −
 
+
'''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。'''
      第120行: 第112行:  
[[Category:控制论]]
 
[[Category:控制论]]
 
[[Category:系统论]]
 
[[Category:系统论]]
  −
此词条暂由Henry翻译。此词条由Miyasaki审校
 
7,129

个编辑

导航菜单