更改

跳到导航 跳到搜索
无编辑摘要
第1行: 第1行: −
本词条由Solitude初步翻译
  −
  −
{{Thermodynamics|cTopic=Laws}}<br>
  −
模板:热力学
  −
  −
The '''laws of thermodynamics''' define physical quantities, such as [[temperature]], [[energy]], and [[entropy]], that characterize [[thermodynamic system]]s at [[thermodynamic equilibrium]]. The laws describe the relationships between these quantities, and form a basis of precluding the possibility of certain phenomena, such as [[perpetual motion]]. In addition to their use in [[thermodynamics]], they are important fundamental [[Physical law|laws]] of [[physics]] in general, and are applicable in other natural [[sciences]].
  −
  −
The laws of thermodynamics define physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems at thermodynamic equilibrium. The laws describe the relationships between these quantities, and form a basis of precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, they are important fundamental laws of physics in general, and are applicable in other natural sciences.
      
'''<font color="#ff8000"> 热力学定律The laws of thermodynamics</font>'''定义了许多物理量,如'''<font color="#ff8000"> 温度temperature</font>'''、'''<font color="#ff8000"> 能量energy</font>'''和'''<font color="#ff8000">熵 entropy</font>''',这些物理量表征处于热力学平衡的热力学系统。这些定律描述了这些物理量之间的关系,并构成了排除某些现象的可能性的基础,例如永动机。除了在热力学中的应用之外,它们也是基础物理学中的重要基本定律,也适用于其他自然科学。
 
'''<font color="#ff8000"> 热力学定律The laws of thermodynamics</font>'''定义了许多物理量,如'''<font color="#ff8000"> 温度temperature</font>'''、'''<font color="#ff8000"> 能量energy</font>'''和'''<font color="#ff8000">熵 entropy</font>''',这些物理量表征处于热力学平衡的热力学系统。这些定律描述了这些物理量之间的关系,并构成了排除某些现象的可能性的基础,例如永动机。除了在热力学中的应用之外,它们也是基础物理学中的重要基本定律,也适用于其他自然科学。
   −
 
+
传统上,'''<font color="#ff8000"> 热力学Thermodynamics</font>'''描述了三个基本定律:
 
+
(简单的按顺序命名为)第一定律、第二定律和第三定律。此外,在前三个定律确立之后,人们认识到可以提出另一个相对于这三个定律更为基本的定律,即第零定律。
 
  −
 
  −
Thermodynamics has traditionally recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law.<ref name="Guggenheim 1985">Guggenheim, E.A. (1985). ''Thermodynamics. An Advanced Treatment for Chemists and Physicists'', seventh edition, North Holland, Amsterdam, {{ISBN|0-444-86951-4}}.</ref><ref name="Kittel and Kroemer 1980">Kittel, C. Kroemer, H. (1980). ''Thermal Physics'', second edition, W.H. Freeman, San Francisco, {{ISBN|0-7167-1088-9}}.</ref><ref name="Adkins 1968">Adkins, C.J. (1968). ''Equilibrium Thermodynamics'', McGraw-Hill, London, {{ISBN|0-07-084057-1}}.</ref><ref name="LJCV 2008">Lebon, G., Jou, D., Casas-Vázquez, J. (2008). ''Understanding Non-equilibrium Thermodynamics. Foundations, Applications, Frontiers'', Springer, Berlin, {{ISBN|978-3-540-74252-4}}.</ref><ref>{{cite book |author1=Chris Vuille |author2=Serway, Raymond A. |author3=Faughn, Jerry S. |title=College physics |publisher=Brooks/Cole, Cengage Learning |location=Belmont, CA |year=2009 |isbn=978-0-495-38693-3 |oclc= |doi= |accessdate= | page =  355 |url=https://books.google.com/books?id=CX0u0mIOZ44C&pg=PT355}}</ref>. In addition, after the first three laws were established, it was recognized that another law, more fundamental to all three, could be stated, which was named the zeroth law.
  −
 
  −
Thermodynamics has traditionally recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law.. In addition, after the first three laws were established, it was recognized that another law, more fundamental to all three, could be stated, which was named the zeroth law.
  −
 
  −
传统上,'''<font color="#ff8000"> 热力学Thermodynamics</font>'''描述了三个基本定律:(简单的按顺序命名为)第一定律、第二定律和第三定律。此外,在前三个定律确立之后,人们认识到可以提出另一个相对于这三个定律更为基本的定律,即第零定律。
  −
 
  −
 
  −
 
  −
The [[zeroth law of thermodynamics]] defines [[thermal equilibrium]] and forms a basis for the definition of [[temperature]]:  If two systems are each in thermal equilibrium with a third system, they are in thermal equilibrium with each other.
  −
 
  −
The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature:  If two systems are each in thermal equilibrium with a third system, they are in thermal equilibrium with each other.
      
'''<font color="#ff8000"> 热力学第零定律zeroth law of thermodynamics</font>'''定义了'''<font color="#ff8000"> 热平衡thermal equilibrium</font>''',并为温度定义奠定了基础:如果两个系统各与第三个系统处于热平衡,则它们彼此也处于热平衡。
 
'''<font color="#ff8000"> 热力学第零定律zeroth law of thermodynamics</font>'''定义了'''<font color="#ff8000"> 热平衡thermal equilibrium</font>''',并为温度定义奠定了基础:如果两个系统各与第三个系统处于热平衡,则它们彼此也处于热平衡。
       +
'''<font color="#ff8000"> 热力学第一定律 first law of thermodynamics</font>''':
 +
当能量以'''<font color="#ff8000"> 功work</font>'''、'''<font color="#ff8000"> 热heat</font>'''或物质的形式进入或离开一个系统时,根据能量守恒定律, 系统的'''<font color="#ff8000">内能 internal energy</font>'''发生变化。同样地,第一类永动机机器(不需要能量输入就可以做功的机器)是不可能造成的。
   −
The [[first law of thermodynamics]]: When energy passes, as [[Work (thermodynamics)|work]], as [[heat]], or with matter, into or out of a system, the system's [[internal energy]] changes in accord with the law of [[conservation of energy]]. Equivalently, [[perpetual motion machine of the first kind|perpetual motion machines of the first kind]] (machines that produce work with no energy input) are impossible.
+
'''<font color="#ff8000"> 热力学第二定律 second law of thermodynamics</font>''':  
 
+
在自然热力学过程中,相互作用的热力学系统的熵的总和增加。同样地,第二类永动机(自发地把热能转化为机械功的机器)是不可能制造出的。
The first law of thermodynamics: When energy passes, as work, as heat, or with matter, into or out of a system, the system's internal energy changes in accord with the law of conservation of energy. Equivalently, perpetual motion machines of the first kind (machines that produce work with no energy input) are impossible.
  −
 
  −
'''<font color="#ff8000"> 热力学第一定律 first law of thermodynamics</font>''': 当能量以'''<font color="#ff8000"> 功work</font>'''、'''<font color="#ff8000"> 热heat</font>'''或物质的形式进入或离开一个系统时,根据能量守恒定律, 系统的'''<font color="#ff8000">内能 internal energy</font>'''发生变化。同样地,第一类永动机机器(不需要能量输入就可以做功的机器)是不可能造成的。
  −
 
  −
 
  −
 
  −
The [[second law of thermodynamics]]: In a natural [[thermodynamic process]], the sum of the [[entropy|entropies]] of the interacting [[thermodynamic system]]s increases. Equivalently, [[perpetual motion machine of the second kind|perpetual motion machines of the second kind]] (machines that spontaneously convert thermal energy into mechanical work) are impossible.
  −
 
  −
The second law of thermodynamics: In a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic systems increases. Equivalently, perpetual motion machines of the second kind (machines that spontaneously convert thermal energy into mechanical work) are impossible.
  −
 
  −
'''<font color="#ff8000"> 热力学第二定律 second law of thermodynamics</font>''': 在自然热力学过程中,相互作用的热力学系统的熵的总和增加。同样地,第二类永动机(自发地把热能转化为机械功的机器)是不可能制造出的。
  −
 
  −
 
  −
 
  −
The [[third law of thermodynamics]]: The [[entropy]] of a system approaches a constant value as the temperature approaches [[absolute zero]].<ref name="Kittel and Kroemer 1980"/>  With the exception of non-crystalline solids ([[glass]]es) the entropy of a system at absolute zero is typically close to zero.
  −
 
  −
The third law of thermodynamics: The entropy of a system approaches a constant value as the temperature approaches absolute zero.  With the exception of non-crystalline solids (glasses) the entropy of a system at absolute zero is typically close to zero.
  −
 
  −
'''<font color="#ff8000"> 热力学第三定律 third law of thermodynamics</font>''':当温度趋于'''<font color="#ff8000"> 绝对零度 absolute zero</font>'''时,系统的熵趋于一个定值。除非晶固体(玻璃)外,系统在绝对零度时的熵通常接近于零。
  −
 
        −
Additional laws have been suggested, but none of them achieved the generality of the four accepted laws, and are not discussed in standard textbooks.<ref name="Guggenheim 1985"/><ref name="Kittel and Kroemer 1980"/><ref name="Adkins 1968"/><ref name="LJCV 2008"/><ref name="DGM 1962">De Groot, S.R., Mazur, P. (1962). ''Non-equilibrium Thermodynamics'', North Holland, Amsterdam.</ref><ref name="Glansdorff and Prigogine 1971">Glansdorff, P., Prigogine, I. (1971). ''Thermodynamic Theory of Structure, Stability and Fluctuations'', Wiley-Interscience, London, {{ISBN|0-471-30280-5}}.</ref>
+
'''<font color="#ff8000"> 热力学第三定律 third law of thermodynamics</font>''':
 +
当温度趋于'''<font color="#ff8000"> 绝对零度 absolute zero</font>'''时,系统的熵趋于一个定值。除非晶固体(玻璃)外,系统在绝对零度时的熵通常接近于零。
   −
Additional laws have been suggested, but none of them achieved the generality of the four accepted laws, and are not discussed in standard textbooks.
+
<ref name="Guggenheim 1985"/><ref name="Kittel and Kroemer 1980"/><ref name="Adkins 1968"/><ref name="LJCV 2008"/><ref name="DGM 1962">De Groot, S.R., Mazur, P. (1962). ''Non-equilibrium Thermodynamics'', North Holland, Amsterdam.</ref><ref name="Glansdorff and Prigogine 1971">Glansdorff, P., Prigogine, I. (1971). ''Thermodynamic Theory of Structure, Stability and Fluctuations'', Wiley-Interscience, London, {{ISBN|0-471-30280-5}}.</ref>
    
有人提出了其他的定律,但没有一个达到公认的四个定律的普遍性,也没有在标准教科书中被讨论<ref name="Guggenheim 1985"/><ref name="Kittel and Kroemer 1980"/><ref name="Adkins 1968"/><ref name="LJCV 2008"/><ref name="DGM 1962">De Groot, S.R., Mazur, P. (1962). ''Non-equilibrium Thermodynamics'', North Holland, Amsterdam.</ref><ref name="Glansdorff and Prigogine 1971">Glansdorff, P., Prigogine, I. (1971). ''Thermodynamic Theory of Structure, Stability and Fluctuations'', Wiley-Interscience, London, {{ISBN|0-471-30280-5}}.</ref>
 
有人提出了其他的定律,但没有一个达到公认的四个定律的普遍性,也没有在标准教科书中被讨论<ref name="Guggenheim 1985"/><ref name="Kittel and Kroemer 1980"/><ref name="Adkins 1968"/><ref name="LJCV 2008"/><ref name="DGM 1962">De Groot, S.R., Mazur, P. (1962). ''Non-equilibrium Thermodynamics'', North Holland, Amsterdam.</ref><ref name="Glansdorff and Prigogine 1971">Glansdorff, P., Prigogine, I. (1971). ''Thermodynamic Theory of Structure, Stability and Fluctuations'', Wiley-Interscience, London, {{ISBN|0-471-30280-5}}.</ref>
42

个编辑

导航菜单