更改

跳到导航 跳到搜索
第812行: 第812行:  
Like [[Mass–energy equivalence#Electromagnetic rest mass|others]] before, Poincaré (1900) discovered a relation between mass and electromagnetic energy. While studying the conflict between the [[Newton's laws of motion|action/reaction principle]] and [[Lorentz ether theory]], he tried to determine whether the [[center of gravity]] still moves with a uniform velocity when electromagnetic fields are included.<ref name=action /> He noticed that the action/reaction principle does not hold for matter alone, but that the electromagnetic field has its own momentum. Poincaré concluded that the electromagnetic field energy of an electromagnetic wave behaves like a fictitious [[fluid]] (''fluide fictif'') with a mass density of ''E''/''c''<sup>2</sup>. If the [[center of mass frame]] is defined by both the mass of matter ''and'' the mass of the fictitious fluid, and if the fictitious fluid is indestructible—it's neither created or destroyed—then the motion of the center of mass frame remains uniform. But electromagnetic energy can be converted into other forms of energy. So Poincaré assumed that there exists a non-electric energy fluid at each point of space, into which electromagnetic energy can be transformed and which also carries a mass proportional to the energy. In this way, the motion of the center of mass remains uniform. Poincaré said that one should not be too surprised by these assumptions, since they are only mathematical fictions.
 
Like [[Mass–energy equivalence#Electromagnetic rest mass|others]] before, Poincaré (1900) discovered a relation between mass and electromagnetic energy. While studying the conflict between the [[Newton's laws of motion|action/reaction principle]] and [[Lorentz ether theory]], he tried to determine whether the [[center of gravity]] still moves with a uniform velocity when electromagnetic fields are included.<ref name=action /> He noticed that the action/reaction principle does not hold for matter alone, but that the electromagnetic field has its own momentum. Poincaré concluded that the electromagnetic field energy of an electromagnetic wave behaves like a fictitious [[fluid]] (''fluide fictif'') with a mass density of ''E''/''c''<sup>2</sup>. If the [[center of mass frame]] is defined by both the mass of matter ''and'' the mass of the fictitious fluid, and if the fictitious fluid is indestructible—it's neither created or destroyed—then the motion of the center of mass frame remains uniform. But electromagnetic energy can be converted into other forms of energy. So Poincaré assumed that there exists a non-electric energy fluid at each point of space, into which electromagnetic energy can be transformed and which also carries a mass proportional to the energy. In this way, the motion of the center of mass remains uniform. Poincaré said that one should not be too surprised by these assumptions, since they are only mathematical fictions.
   −
 
+
像以前的[[质量-能量等效性#电磁静止质量|其他]]一样,庞加莱(1900)发现了质量和电磁能之间的关系。在研究[[牛顿运动定律|作用/反应原理]]和[[洛伦兹以太理论]]之间的冲突时,他试图确定当包含电磁场时,[[重心]]是否仍以匀速运动。<ref name=action/>他注意到作用/反作用原理不仅适用于物质,而且电磁场有其自身的动量。庞加莱得出结论,电磁波的电磁场能量表现为一个虚拟的[[流体]](“流体虚拟”),质量密度为''E''/''c''<sup>2</sup>。如果[[质心框架]]由物质的质量和虚拟流体的质量共同定义,并且如果虚拟流体是不可摧毁的,它既不会被创造也不会被摧毁,那么质量中心框架的运动保持一致。但是电磁能可以转化成其他形式的能量。因此,庞加莱假设在空间的每一点都存在一个非电能流体,它可以将电磁能转化为它,它也携带着与能量成比例的质量。这样,质心的运动保持一致。庞加莱说,人们不应该对这些假设感到太惊讶,因为它们只是数学上的虚构。
    
However, Poincaré's resolution led to a paradox when changing frames: if a Hertzian oscillator radiates in a certain direction, it will suffer a [[recoil]] from the inertia of the fictitious fluid. Poincaré performed a [[Lorentz boost]] (to order ''v''/''c'') to the frame of the moving source. He noted that energy conservation holds in both frames, but that the law of conservation of momentum is violated. This would allow [[perpetual motion]], a notion which he abhorred. The laws of nature would have to be different in the frames of reference, and the relativity principle would not hold. Therefore, he argued that also in this case there has to be another compensating mechanism in the ether.
 
However, Poincaré's resolution led to a paradox when changing frames: if a Hertzian oscillator radiates in a certain direction, it will suffer a [[recoil]] from the inertia of the fictitious fluid. Poincaré performed a [[Lorentz boost]] (to order ''v''/''c'') to the frame of the moving source. He noted that energy conservation holds in both frames, but that the law of conservation of momentum is violated. This would allow [[perpetual motion]], a notion which he abhorred. The laws of nature would have to be different in the frames of reference, and the relativity principle would not hold. Therefore, he argued that also in this case there has to be another compensating mechanism in the ether.
   −
 
+
然而,庞加莱的解决方案导致了一个悖论:如果<font color="#ff8000"> 赫兹振子</font>朝某个方向辐射,它将受到虚拟流体惯性的[[反冲]]。庞加莱对移动源的帧执行了[[洛伦兹升压Lorentz boost]](顺序为“v”/“c”)。他指出,能量守恒在这两个框架中都成立,但动量守恒定律被违反了。这就允许了[[永动机]],一个他深恶痛绝的概念。自然法则必须在参照系中有所不同,相对论原理就不成立了。因此,他认为,在这种情况下,<font color="#ff8000"> 乙太</font>中必须有另一种补偿机制。
    
Poincaré's work in the development of special relativity is well recognised, Poincaré developed a similar physical interpretation of local time and noticed the connection to signal velocity, but contrary to Einstein he continued to use the ether-concept in his papers and argued that clocks at rest in the ether show the "true" time, and moving clocks show the local time. So Poincaré tried to keep the relativity principle in accordance with classical concepts, while Einstein developed a mathematically equivalent kinematics based on the new physical concepts of the relativity of space and time.
 
Poincaré's work in the development of special relativity is well recognised, Poincaré developed a similar physical interpretation of local time and noticed the connection to signal velocity, but contrary to Einstein he continued to use the ether-concept in his papers and argued that clocks at rest in the ether show the "true" time, and moving clocks show the local time. So Poincaré tried to keep the relativity principle in accordance with classical concepts, while Einstein developed a mathematically equivalent kinematics based on the new physical concepts of the relativity of space and time.
   −
庞加莱在发展狭义相对论方面的工作得到了广泛认可,庞加莱对当地时间进行了类似的物理解释,并注意到了与信号速度的联系,但与爱因斯坦相反,他在论文中继续使用以太的概念,认为静止在以太中的时钟显示“真实”的时间,而移动的时钟显示当地时间。因此庞加莱试图使相对论原理与经典概念保持一致,而爱因斯坦则基于空间和时间相对论的新物理概念,发展了一个数学等价的运动学。
+
庞加莱在发展狭义相对论方面的工作得到了广泛认可,庞加莱对<font color="#ff8000"> 本地时间</font>进行了类似的物理解释,并注意到了与信号速度的联系,但与爱因斯坦相反,他在论文中继续使用<font color="#ff8000"> 以太</font>的概念,认为静止在以太中的时钟显示“真实”的时间,而移动的时钟显示<font color="#ff8000"> 本地时间</font>。因此庞加莱试图使相对论原理与经典概念保持一致,而爱因斯坦则基于空间和时间相对论的新物理概念,发展了一个与数学等价的运动学。
    
Poincaré himself came back to this topic in his St. Louis lecture (1904).<ref name=louis /> This time (and later also in 1908) he rejected<ref>Miller 1981, Secondary sources on relativity</ref> the possibility that energy carries mass and criticized the ether solution to compensate the above-mentioned problems:
 
Poincaré himself came back to this topic in his St. Louis lecture (1904).<ref name=louis /> This time (and later also in 1908) he rejected<ref>Miller 1981, Secondary sources on relativity</ref> the possibility that energy carries mass and criticized the ether solution to compensate the above-mentioned problems:
   −
 
+
庞加莱本人在圣路易斯讲座(1904)中又回到了这个话题上。这次(后来也是在1908年),他拒绝了米勒1981年出版的《相对论的第二资源:能量携带质量的可能性》,并批评了以太方案来补偿上述问题:
    
While this is the view of most historians, a minority go much further, such as E. T. Whittaker, who held that Poincaré and Lorentz were the true discoverers of relativity.
 
While this is the view of most historians, a minority go much further, such as E. T. Whittaker, who held that Poincaré and Lorentz were the true discoverers of relativity.
   −
虽然这是大多数历史学家的观点,少数人走得更远,如惠特克,他认为,Poincaré 和洛伦兹是真正的发现者相对论。
+
虽然这是大多数历史学家的观点,少数人走得更远,如惠特克,他认为,庞加莱和洛伦兹是真正的相对论发现者。
    
{{quote|The apparatus will recoil as if it were a cannon and the projected energy a ball, and that contradicts the principle of Newton, since our present projectile has no mass; it is not matter, it is energy. [..] Shall we say that the space which separates the oscillator from the receiver and which the disturbance must traverse in passing from one to the other, is not empty, but is filled not only with ether, but with air, or even in inter-planetary space with some subtile, yet ponderable fluid; that this matter receives the shock, as does the receiver, at the moment the energy reaches it, and recoils, when the disturbance leaves it? That would save Newton's principle, but it is not true. If the energy during its propagation remained always attached to some material substratum, this matter would carry the light along with it and Fizeau has shown, at least for the air, that there is nothing of the kind. Michelson and Morley have since confirmed this. We might also suppose that the motions of matter proper were exactly compensated by those of the ether; but that would lead us to the same considerations as those made a moment ago. The principle, if thus interpreted, could explain anything, since whatever the visible motions we could imagine hypothetical motions to compensate them. But if it can explain anything, it will allow us to foretell nothing; it will not allow us to choose between the various possible hypotheses, since it explains everything in advance. It therefore becomes useless. }}
 
{{quote|The apparatus will recoil as if it were a cannon and the projected energy a ball, and that contradicts the principle of Newton, since our present projectile has no mass; it is not matter, it is energy. [..] Shall we say that the space which separates the oscillator from the receiver and which the disturbance must traverse in passing from one to the other, is not empty, but is filled not only with ether, but with air, or even in inter-planetary space with some subtile, yet ponderable fluid; that this matter receives the shock, as does the receiver, at the moment the energy reaches it, and recoils, when the disturbance leaves it? That would save Newton's principle, but it is not true. If the energy during its propagation remained always attached to some material substratum, this matter would carry the light along with it and Fizeau has shown, at least for the air, that there is nothing of the kind. Michelson and Morley have since confirmed this. We might also suppose that the motions of matter proper were exactly compensated by those of the ether; but that would lead us to the same considerations as those made a moment ago. The principle, if thus interpreted, could explain anything, since whatever the visible motions we could imagine hypothetical motions to compensate them. But if it can explain anything, it will allow us to foretell nothing; it will not allow us to choose between the various possible hypotheses, since it explains everything in advance. It therefore becomes useless. }}
    +
{{引用}这个装置会后坐,就像它是一门大炮,投射的能量是一个球,这与牛顿原理相矛盾,因为我们现在的弹丸没有质量;它不是物质,而是能量。[…]我们是否可以说,将振荡器与接收器分开的空间,以及扰动在从一个到另一个的过程中必须穿过的空间并不是空的,而是不仅充满了乙太,而且充满了空气,甚至在行星间的空间中,充满了一些微妙而可测量的流体;这个物质受到了冲击,就像接收器,在能量到达它的那一刻,当干扰离开它时,它会反冲?这可以拯救牛顿原理,但事实并非如此。如果能量在它的传播过程中始终依附于某些物质的底层,这种物质就会携带着光,而菲佐已经证明,至少对空气来说,没有这种物质。迈克尔逊和莫利后来证实了这一点。我们也可以假设物质本身的运动完全被以太的运动所补偿,但这会使我们产生与刚才一样的考虑。这个原理,如果这样解释的话,可以解释任何东西,因为不管是什么可见的运动,我们都可以想象出假想的运动来补偿它们。但如果它能解释任何事情,它将使我们什么也不能预言;它将不允许我们在各种可能的假设之间作出选择,因为它预先解释了一切。因此,它变得毫无用处。}}
    +
He also discussed two other unexplained effects: (1) non-conservation of mass implied by Lorentz's variable mass <math>\gamma m</math>, Abraham's theory of variable mass and [[Walter Kaufmann (physicist)|Kaufmann]]'s experiments on the mass of fast moving electrons and (2) the non-conservation of energy in the radium experiments of [[Madame Curie]].
   −
He also discussed two other unexplained effects: (1) non-conservation of mass implied by Lorentz's variable mass <math>\gamma m</math>, Abraham's theory of variable mass and [[Walter Kaufmann (physicist)|Kaufmann]]'s experiments on the mass of fast moving electrons and (2) the non-conservation of energy in the radium experiments of [[Madame Curie]].
+
他还讨论了另外两个无法解释的影响:(1)洛伦兹的变质量<math>\gamma m</math>所暗示的质量非守恒性,亚伯拉罕的变质量理论和[[瓦尔特·考夫曼(物理学家)| 考夫曼]]关于快速移动电子质量的实验和(2)[[居里夫人]]镭实验中的能量非守恒。
    
Poincaré introduced group theory to physics, and was the first to study the group of Lorentz transformations. He also made major contributions to the theory of discrete groups and their representations.
 
Poincaré introduced group theory to physics, and was the first to study the group of Lorentz transformations. He also made major contributions to the theory of discrete groups and their representations.
第847行: 第849行:     
It was [[Albert Einstein]]'s concept of [[mass–energy equivalence]] (1905) that a body losing energy as radiation or heat was losing mass of amount ''m''&nbsp;=&nbsp;''E''/''c''<sup>2</sup> that resolved<ref name=darrigol>Darrigol 2005, Secondary sources on relativity</ref> Poincaré's paradox, without using any compensating mechanism within the ether.<ref>{{Citation|author=Einstein, A. |year=1905b |title=Ist die Trägheit eines Körpers von dessen Energieinhalt abhängig? |journal=Annalen der Physik |volume=18 |issue=13 |pages=639–643 |bibcode=1905AnP...323..639E |doi= 10.1002/andp.19053231314 |url=http://www.physik.uni-augsburg.de/annalen/history/papers/1905_18_639-641.pdf |archive-url=https://web.archive.org/web/20050124051500/http://www.physik.uni-augsburg.de/annalen/history/papers/1905_18_639-641.pdf |url-status=dead |archive-date=24 January 2005}}. See also [http://www.fourmilab.ch/etexts/einstein/specrel/www English translation].</ref> The Hertzian oscillator loses mass in the emission process, and momentum is conserved in any frame. However, concerning Poincaré's solution of the Center of Gravity problem, Einstein noted that Poincaré's formulation and his own from 1906 were mathematically equivalent.<ref>{{Citation|author=Einstein, A. |year=1906 |title=Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie |journal=Annalen der Physik |volume=20 |pages=627–633 |doi=10.1002/andp.19063250814 |issue=8 |bibcode=1906AnP...325..627E |url= http://www.physik.uni-augsburg.de/annalen/history/papers/1906_20_627-633.pdf |archive-url=https://web.archive.org/web/20060318060830/http://www.physik.uni-augsburg.de/annalen/history/papers/1906_20_627-633.pdf |url-status=dead |archive-date=18 March 2006}}</ref>
 
It was [[Albert Einstein]]'s concept of [[mass–energy equivalence]] (1905) that a body losing energy as radiation or heat was losing mass of amount ''m''&nbsp;=&nbsp;''E''/''c''<sup>2</sup> that resolved<ref name=darrigol>Darrigol 2005, Secondary sources on relativity</ref> Poincaré's paradox, without using any compensating mechanism within the ether.<ref>{{Citation|author=Einstein, A. |year=1905b |title=Ist die Trägheit eines Körpers von dessen Energieinhalt abhängig? |journal=Annalen der Physik |volume=18 |issue=13 |pages=639–643 |bibcode=1905AnP...323..639E |doi= 10.1002/andp.19053231314 |url=http://www.physik.uni-augsburg.de/annalen/history/papers/1905_18_639-641.pdf |archive-url=https://web.archive.org/web/20050124051500/http://www.physik.uni-augsburg.de/annalen/history/papers/1905_18_639-641.pdf |url-status=dead |archive-date=24 January 2005}}. See also [http://www.fourmilab.ch/etexts/einstein/specrel/www English translation].</ref> The Hertzian oscillator loses mass in the emission process, and momentum is conserved in any frame. However, concerning Poincaré's solution of the Center of Gravity problem, Einstein noted that Poincaré's formulation and his own from 1906 were mathematically equivalent.<ref>{{Citation|author=Einstein, A. |year=1906 |title=Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie |journal=Annalen der Physik |volume=20 |pages=627–633 |doi=10.1002/andp.19063250814 |issue=8 |bibcode=1906AnP...325..627E |url= http://www.physik.uni-augsburg.de/annalen/history/papers/1906_20_627-633.pdf |archive-url=https://web.archive.org/web/20060318060830/http://www.physik.uni-augsburg.de/annalen/history/papers/1906_20_627-633.pdf |url-status=dead |archive-date=18 March 2006}}</ref>
 +
 +
正是[[阿尔伯特·爱因斯坦]]的[[质能守恒]](1905年)的概念,一个以辐射或热的形式损失能量的物体,其质量损失量为''m''&nbsp;=&nbsp;''E''/''c''<sup>2</sup><ref name=darrigol>Darrigol 2005, Secondary sources on relativity</ref> 解决了庞加莱悖论,没有使用以太内部的任何补偿机制。<ref>{{Citation|author=Einstein, A. |year=1905b |title=Ist die Trägheit eines Körpers von dessen Energieinhalt abhängig? |journal=Annalen der Physik |volume=18 |issue=13 |pages=639–643 |bibcode=1905AnP...323..639E |doi= 10.1002/andp.19053231314 |url=http://www.physik.uni-augsburg.de/annalen/history/papers/1905_18_639-641.pdf |archive-url=https://web.archive.org/web/20050124051500/http://www.physik.uni-augsburg.de/annalen/history/papers/1905_18_639-641.pdf |url-status=dead |archive-date=24 January 2005}}请参阅 [http://www.fourmilab.ch/etexts/einstein/specrel/www English translation]。</ref> The Hertzian oscillator loses mass in the emission process, and momentum is conserved in any frame. However, concerning Poincaré's solution of the Center of Gravity problem, Einstein noted that Poincaré's formulation and his own from 1906 were mathematically equivalent.<ref>{{Citation|author=Einstein, A. |year=1906 |title=Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie |journal=Annalen der Physik |volume=20 |pages=627–633 |doi=10.1002/andp.19063250814 |issue=8 |bibcode=1906AnP...325..627E |url= http://www.physik.uni-augsburg.de/annalen/history/papers/1906_20_627-633.pdf |archive-url=https://web.archive.org/web/20060318060830/http://www.physik.uni-augsburg.de/annalen/history/papers/1906_20_627-633.pdf |url-status=dead |archive-date=18 March 2006}}</ref>
    
====Gravitational waves====
 
====Gravitational waves====
561

个编辑

导航菜单