| 他对几何的研究导致了<font color="#ff8000"> 同伦和同调Homotopy and Homology</font>的抽象拓扑定义。他还首先介绍了组合拓扑的基本概念和不变量,如 贝蒂Betti 数和基本群。证明了 n 维多面体的边数、顶点数和面数的一个公式(欧拉-庞加莱定理) ,给出了直观维数概念的第一个精确表达式。 | | 他对几何的研究导致了<font color="#ff8000"> 同伦和同调Homotopy and Homology</font>的抽象拓扑定义。他还首先介绍了组合拓扑的基本概念和不变量,如 贝蒂Betti 数和基本群。证明了 n 维多面体的边数、顶点数和面数的一个公式(欧拉-庞加莱定理) ,给出了直观维数概念的第一个精确表达式。 |
| Einstein's first paper on relativity was published three months after Poincaré's short paper,<ref name="1905 paper" /> but before Poincaré's longer version.<ref name=long /> Einstein relied on the principle of relativity to derive the Lorentz transformations and used a similar clock synchronisation procedure ([[Einstein synchronisation]]) to the one that Poincaré (1900) had described, but Einstein's paper was remarkable in that it contained no references at all. Poincaré never acknowledged Einstein's work on [[special relativity]]. However, Einstein expressed sympathy with Poincaré's outlook obliquely in a letter to [[Hans Vaihinger]] on 3 May 1919, when Einstein considered Vaihinger's general outlook to be close to his own and Poincaré's to be close to Vaihinger's.<ref>{{cite book|series=The Collected Papers of Albert Einstein |url=http://einsteinpapers.press.princeton.edu/vol9-trans/52 |publisher=Princeton U.P. |accessdate=|volume = 9|title = The Berlin Years: Correspondence, January 1919-April 1920 (English translation supplement)|page = 30}} See also this letter, with commentary, in {{cite journal |last=Sass |first=Hans-Martin | authorlink = Hans-Martin Sass|date=1979 |title=Einstein über "wahre Kultur" und die Stellung der Geometrie im Wissenschaftssystem: Ein Brief Albert Einsteins an Hans Vaihinger vom Jahre 1919 |journal=[[Zeitschrift für allgemeine Wissenschaftstheorie]] |volume=10 |issue=2 |pages=316–319 |jstor=25170513 |language=de |doi=10.1007/bf01802352|s2cid=170178963 }}</ref> In public, Einstein acknowledged Poincaré posthumously in the text of a lecture in 1921 called ''Geometrie und Erfahrung'' in connection with [[non-Euclidean geometry]], but not in connection with special relativity. A few years before his death, Einstein commented on Poincaré as being one of the pioneers of relativity, saying "Lorentz had already recognised that the transformation named after him is essential for the analysis of Maxwell's equations, and Poincaré deepened this insight still further ...."<ref>Darrigol 2004, Secondary sources on relativity</ref> | | Einstein's first paper on relativity was published three months after Poincaré's short paper,<ref name="1905 paper" /> but before Poincaré's longer version.<ref name=long /> Einstein relied on the principle of relativity to derive the Lorentz transformations and used a similar clock synchronisation procedure ([[Einstein synchronisation]]) to the one that Poincaré (1900) had described, but Einstein's paper was remarkable in that it contained no references at all. Poincaré never acknowledged Einstein's work on [[special relativity]]. However, Einstein expressed sympathy with Poincaré's outlook obliquely in a letter to [[Hans Vaihinger]] on 3 May 1919, when Einstein considered Vaihinger's general outlook to be close to his own and Poincaré's to be close to Vaihinger's.<ref>{{cite book|series=The Collected Papers of Albert Einstein |url=http://einsteinpapers.press.princeton.edu/vol9-trans/52 |publisher=Princeton U.P. |accessdate=|volume = 9|title = The Berlin Years: Correspondence, January 1919-April 1920 (English translation supplement)|page = 30}} See also this letter, with commentary, in {{cite journal |last=Sass |first=Hans-Martin | authorlink = Hans-Martin Sass|date=1979 |title=Einstein über "wahre Kultur" und die Stellung der Geometrie im Wissenschaftssystem: Ein Brief Albert Einsteins an Hans Vaihinger vom Jahre 1919 |journal=[[Zeitschrift für allgemeine Wissenschaftstheorie]] |volume=10 |issue=2 |pages=316–319 |jstor=25170513 |language=de |doi=10.1007/bf01802352|s2cid=170178963 }}</ref> In public, Einstein acknowledged Poincaré posthumously in the text of a lecture in 1921 called ''Geometrie und Erfahrung'' in connection with [[non-Euclidean geometry]], but not in connection with special relativity. A few years before his death, Einstein commented on Poincaré as being one of the pioneers of relativity, saying "Lorentz had already recognised that the transformation named after him is essential for the analysis of Maxwell's equations, and Poincaré deepened this insight still further ...."<ref>Darrigol 2004, Secondary sources on relativity</ref> |