| 庞加莱为引力旋转流体的平衡图写了重要的天文学著作。他引入了<font color="#ff8000"> 分支点</font>的重要概念,证明了非椭球体(包括环形和梨形)等平衡图形的存在性及其稳定性。这项天文发现奖(1900年)被英国皇家天文学会授予。<ref>A. Kozenko, The theory of planetary figures, pages = 25–26{{full citation needed|date=September 2019}}</ref> | | 庞加莱为引力旋转流体的平衡图写了重要的天文学著作。他引入了<font color="#ff8000"> 分支点</font>的重要概念,证明了非椭球体(包括环形和梨形)等平衡图形的存在性及其稳定性。这项天文发现奖(1900年)被英国皇家天文学会授予。<ref>A. Kozenko, The theory of planetary figures, pages = 25–26{{full citation needed|date=September 2019}}</ref> |
| Poincaré's mental organisation was not only interesting to Poincaré himself but also to Édouard Toulouse, a psychologist of the Psychology Laboratory of the School of Higher Studies in Paris. Toulouse wrote a book entitled Henri Poincaré (1910). In it, he discussed Poincaré's regular schedule: | | Poincaré's mental organisation was not only interesting to Poincaré himself but also to Édouard Toulouse, a psychologist of the Psychology Laboratory of the School of Higher Studies in Paris. Toulouse wrote a book entitled Henri Poincaré (1910). In it, he discussed Poincaré's regular schedule: |
| After defending his doctoral thesis on the study of singular points of the system of differential equations, Poincaré wrote a series of memoirs under the title "On curves defined by differential equations" (1881–1882).<ref>French: "Mémoire sur les courbes définies par une équation différentielle"</ref> In these articles, he built a new branch of mathematics, called "[[qualitative theory of differential equations]]". Poincaré showed that even if the differential equation can not be solved in terms of known functions, yet from the very form of the equation, a wealth of information about the properties and behavior of the solutions can be found. In particular, Poincaré investigated the nature of the trajectories of the integral curves in the plane, gave a classification of singular points (saddle, focus, center, node), introduced the concept of a limit cycle and the loop index, and showed that the number of limit cycles is always finite, except for some special cases. Poincaré also developed a general theory of integral invariants and solutions of the variational equations. For the finite-difference equations, he created a new direction – the asymptotic analysis of the solutions. He applied all these achievements to study practical problems of [[mathematical physics]] and [[celestial mechanics]], and the methods used were the basis of its topological works.<ref>{{cite book|editor1-last=Kolmogorov|editor1-first = A.N.|editor2-first = A.P.|editor2-last= Yushkevich|title = Mathematics of the 19th century |volume= 3| pages = 162–174, 283|isbn= 978-3764358457|date = 24 March 1998}}</ref> | | After defending his doctoral thesis on the study of singular points of the system of differential equations, Poincaré wrote a series of memoirs under the title "On curves defined by differential equations" (1881–1882).<ref>French: "Mémoire sur les courbes définies par une équation différentielle"</ref> In these articles, he built a new branch of mathematics, called "[[qualitative theory of differential equations]]". Poincaré showed that even if the differential equation can not be solved in terms of known functions, yet from the very form of the equation, a wealth of information about the properties and behavior of the solutions can be found. In particular, Poincaré investigated the nature of the trajectories of the integral curves in the plane, gave a classification of singular points (saddle, focus, center, node), introduced the concept of a limit cycle and the loop index, and showed that the number of limit cycles is always finite, except for some special cases. Poincaré also developed a general theory of integral invariants and solutions of the variational equations. For the finite-difference equations, he created a new direction – the asymptotic analysis of the solutions. He applied all these achievements to study practical problems of [[mathematical physics]] and [[celestial mechanics]], and the methods used were the basis of its topological works.<ref>{{cite book|editor1-last=Kolmogorov|editor1-first = A.N.|editor2-first = A.P.|editor2-last= Yushkevich|title = Mathematics of the 19th century |volume= 3| pages = 162–174, 283|isbn= 978-3764358457|date = 24 March 1998}}</ref> |