更改

跳到导航 跳到搜索
删除9字节 、 2020年11月26日 (四) 21:38
无编辑摘要
第97行: 第97行:  
does not tend towards anything as <math>x</math> approaches <math>c = 0</math>. The limits in this case are not infinite, but rather undefined: there is no value that <math>g(x)</math> settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity.
 
does not tend towards anything as <math>x</math> approaches <math>c = 0</math>. The limits in this case are not infinite, but rather undefined: there is no value that <math>g(x)</math> settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity.
   −
在x趋于<math>c = 0</math>时不趋向任何值。在这种情况下,极限不是无限的,而是没有定义的:g(x)m没有确定的值。借用复杂的分析,这有时被称为<font color=“#ff8000”>本质奇点(本性奇点) essential singularity </font>。
+
在x趋于<math>c = 0</math>时不趋向任何值。在这种情况下,极限不是无限的,而是没有定义的:g(x)m没有确定的值。借用复分析,这有时被称为<font color=“#ff8000”>本质奇点(本性奇点) essential singularity </font>。
      第146行: 第146行:  
无限不连续是当左极限或右极限不存在时的特例,特别是因为它是无限的,而另一个极限要么是无限的,要么是某种定义良好的有限数。换句话说,当函数的图形有一个[[垂直渐近线]]时,函数具有无限的不连续性。
 
无限不连续是当左极限或右极限不存在时的特例,特别是因为它是无限的,而另一个极限要么是无限的,要么是某种定义良好的有限数。换句话说,当函数的图形有一个[[垂直渐近线]]时,函数具有无限的不连续性。
 
** An '''essential singularity''' is a term borrowed from complex analysis (see below). This is the case when either one or the other limits <math>f(c^-)</math> or <math>f(c^+)</math> does not exist, but not because it is an ''infinite discontinuity''. ''Essential singularities'' approach no limit, not even if valid answers are extended to include <math>\pm\infty</math>.
 
** An '''essential singularity''' is a term borrowed from complex analysis (see below). This is the case when either one or the other limits <math>f(c^-)</math> or <math>f(c^+)</math> does not exist, but not because it is an ''infinite discontinuity''. ''Essential singularities'' approach no limit, not even if valid answers are extended to include <math>\pm\infty</math>.
“<font color=“#ff8000”>本质奇点</font>”是从复杂分析中借用的一个术语(见下文)。当极限f(c−)或f(c+)两者中的任意一者不存在时,情况就会如此,但不是因为它是一个“无限不连续性”。<font color=“#ff8000”>本质奇点</font>“接近无限制,即使有效解扩展到包括<math>\pm\infty</math>。
+
“<font color=“#ff8000”>本质奇点</font>”是从复分析中借用的一个术语(见下文)。当极限f(c−)或f(c+)两者中的任意一者不存在时,情况就会如此,但不是因为它是一个“无限不连续性”。<font color=“#ff8000”>本质奇点</font>“接近无限制,即使有效解扩展到包括<math>\pm\infty</math>。
     
29

个编辑

导航菜单