更改

跳到导航 跳到搜索
删除76字节 、 2020年11月29日 (日) 01:38
无编辑摘要
第864行: 第864行:  
<font color="#ff8000">Wald 法</font>
 
<font color="#ff8000">Wald 法</font>
   −
: <math> \widehat{p\,} \pm z \sqrt{ \frac{ \widehat{p\,} ( 1 -\widehat{p\,} )}{ n } } .</math>
+
:<math> \widehat{p\,} \pm z \sqrt{ \frac{ \widehat{p\,} ( 1 -\widehat{p\,} )}{ n } } .</math>
   −
  <math>\frac{}\widehat{p\,} + \frac{z^2}{2n} + z</math>
+
  <math>\frac{p}{z^2}{2n}\widehat{p\,} + \frac{z^2}{2n} + z</math>
    
: A [[continuity correction]] of 0.5/''n'' may be added. {{clarify|date=July 2012}};
 
: A [[continuity correction]] of 0.5/''n'' may be added. {{clarify|date=July 2012}};
第872行: 第872行:  
可以添加一个0.5/''n''连续调整。(2012年7月更新)
 
可以添加一个0.5/''n''连续调整。(2012年7月更新)
   −
<math>   \sqrt{\frac{\widehat{p\,}(1 - \widehat{p\,})}{n} </math>
+
<math> \sqrt{\frac{p}{n}\widehat{p\,}(1 - \widehat{p\,}){n} </math>
    
==== Agresti–Coull method ====
 
==== Agresti–Coull method ====
第963行: 第963行:     
<math>  &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m}</math>
 
<math>  &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m}</math>
  −
    \sqrt{}
  −
  −
<math> \end{align}</math>
      
<math>\frac{\widehat{p\,}(1 - \widehat{p\,})}{n} </math>
 
<math>\frac{\widehat{p\,}(1 - \widehat{p\,})}{n} </math>
第974行: 第970行:  
由于<math>\tbinom{n}{k} \tbinom{k}{m} = \tbinom{n}{m} \tbinom{n-m}{k-m}</math>,上述方程可表示为
 
由于<math>\tbinom{n}{k} \tbinom{k}{m} = \tbinom{n}{m} \tbinom{n-m}{k-m}</math>,上述方程可表示为
   −
<math>       \frac{z^2}{4 n^2}</math>
+
<math>\frac{z^2}{4 n^2}</math>
    
<math> \Pr[Y = m] = \sum_{k=m}^{n} \binom{n}{m} \binom{n-m}{k-m} p^k q^m (1-p)^{n-k} (1-q)^{k-m} </math>
 
<math> \Pr[Y = m] = \sum_{k=m}^{n} \binom{n}{m} \binom{n-m}{k-m} p^k q^m (1-p)^{n-k} (1-q)^{k-m} </math>
第983行: 第979行:     
}{
 
}{
  −
<math>\begin{align}</math>
      
<math>    1 + \frac{z^2}{n}</math>
 
<math>    1 + \frac{z^2}{n}</math>
   −
<math>   \Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]}</math><ref>{{cite book
+
<math>\Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]}</math><ref>{{cite book
    
<math>  &= \binom{n}{m} (pq)^m \left( \sum_{k=m}^n \binom{n-m}{k-m} \left(p(1-q)\right)^{k-m} (1-p)^{n-k}  \right)</math>
 
<math>  &= \binom{n}{m} (pq)^m \left( \sum_{k=m}^n \binom{n-m}{k-m} \left(p(1-q)\right)^{k-m} (1-p)^{n-k}  \right)</math>
第1,017行: 第1,011行:  
}}</ref>
 
}}</ref>
   −
<math>   &= \binom{n}{m} (pq)^m (1-pq)^{n-m}</math>  
+
<math> &= \binom{n}{m} (pq)^m (1-pq)^{n-m}</math>  
    
==== Comparison ====
 
==== Comparison ====
第1,023行: 第1,017行:  
and thus  Y \sim B(n, pq)  as desired.
 
and thus  Y \sim B(n, pq)  as desired.
   −
因此Y \sim B(n, pq)为所需值。
+
因此<math>Y \sim B(n, pq)</math>为所需值。
    
The exact ([[Binomial proportion confidence interval#Clopper–Pearson interval|Clopper–Pearson]]) method is the most conservative.<ref name="Brown2001" />
 
The exact ([[Binomial proportion confidence interval#Clopper–Pearson interval|Clopper–Pearson]]) method is the most conservative.<ref name="Brown2001" />
第1,058行: 第1,052行:       −
 
+
<math>\operatorname P(Z=k) &= \sum_{i=0}^k\left[\binom{n}i p^i (1-p)^{n-i}\right]\left[\binom{m}{k-i} p^{k-i} (1-p)^{m-k+i}\right]\\</math>
 
  −
:<math>\operatorname P(Z=k) &= \sum_{i=0}^k\left[\binom{n}i p^i (1-p)^{n-i}\right]\left[\binom{m}{k-i} p^{k-i} (1-p)^{m-k+i}\right]\\</math>
      
Binomial [[probability mass function and normal probability density function approximation for n&nbsp;=&nbsp;6 and p&nbsp;=&nbsp;0.5]]
 
Binomial [[probability mass function and normal probability density function approximation for n&nbsp;=&nbsp;6 and p&nbsp;=&nbsp;0.5]]
第1,066行: 第1,058行:  
二项式n&nbsp;=&nbsp;6 and p&nbsp;=&nbsp;0.5的概率质量函数和正态概率密度函数近似
 
二项式n&nbsp;=&nbsp;6 and p&nbsp;=&nbsp;0.5的概率质量函数和正态概率密度函数近似
   −
                      <math> &= \binom{n+m}k p^k (1-p)^{n+m-k}</math>
+
<math> &= \binom{n+m}k p^k (1-p)^{n+m-k}</math>
      第1,153行: 第1,145行:  
:<math>\Pr[Y = m] &= \sum_{k = m}^{n} \Pr[Y = m \mid X = k] \Pr[X = k] \\[2pt]</math>
 
:<math>\Pr[Y = m] &= \sum_{k = m}^{n} \Pr[Y = m \mid X = k] \Pr[X = k] \\[2pt]</math>
   −
<math>P(p;\alpha,\beta) = \frac{p^{\alpha-1}(1-p)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}.</math>
+
<math>P(p;\alpha,\beta) =\frac{p^{\alpha-1}(1-p)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}.</math>
   −
<math>P (p; alpha,beta) = frac { p ^ { alpha-1}(1-p) ^ { beta-1}{ mathrm { b }(alpha,beta)}}.
+
<math>P (p; alpha,beta) = frac { p ^ { alpha-1}(1-p) ^ { beta-1}{ mathrm { b }(alpha,beta)}}.</math>
   −
  &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m}</math>
+
<math>  &= \sum_{k=m}^n \binom{n}{k} \binom{k}{m} p^k q^m (1-p)^{n-k} (1-q)^{k-m}</math></math>
    
Given a uniform prior, the posterior distribution for the probability of success  given  independent events with  observed successes is a beta distribution.
 
Given a uniform prior, the posterior distribution for the probability of success  given  independent events with  observed successes is a beta distribution.
第1,178行: 第1,170行:  
<font color="#ff8000">边缘分布 marginal distribution </font>是二项分布较完善的随机数产生方法。
 
<font color="#ff8000">边缘分布 marginal distribution </font>是二项分布较完善的随机数产生方法。
   −
:<math>\Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]</math>
+
<math>\Pr[Y = m] &= \binom{n}{m} p^m q^m \left( \sum_{k=m}^n \binom{n-m}{k-m} p^{k-m} (1-p)^{n-k} (1-q)^{k-m} \right) \\[2pt]</math>
    
One way to generate random samples from a binomial distribution is to use an inversion algorithm. To do so, one must calculate the probability that  for all values  from  through . (These probabilities should sum to a value close to one, in order to encompass the entire sample space.) Then by using a pseudorandom number generator to generate samples uniformly between 0 and 1, one can transform the calculated samples into discrete numbers by using the probabilities calculated in the first step.
 
One way to generate random samples from a binomial distribution is to use an inversion algorithm. To do so, one must calculate the probability that  for all values  from  through . (These probabilities should sum to a value close to one, in order to encompass the entire sample space.) Then by using a pseudorandom number generator to generate samples uniformly between 0 and 1, one can transform the calculated samples into discrete numbers by using the probabilities calculated in the first step.
    
一种从二项分布中产生随机样本的方法是使用<font color="#ff8000">反演算法 inversion algorithm </font>。要做到这一点,我们必须计算从到的所有值的概率。(为了包含整个样本空间,这些概率的和应该接近于1。)然后,通过使用伪随机数生成器来生成介于0和1之间的样本,可以使用在第一步计算出的概率将计算出的样本转换成离散数。
 
一种从二项分布中产生随机样本的方法是使用<font color="#ff8000">反演算法 inversion algorithm </font>。要做到这一点,我们必须计算从到的所有值的概率。(为了包含整个样本空间,这些概率的和应该接近于1。)然后,通过使用伪随机数生成器来生成介于0和1之间的样本,可以使用在第一步计算出的概率将计算出的样本转换成离散数。
 
+
:<math>&= \binom{n}{m} (pq)^m \left( \sum_{k=m}^n \binom{n-m}{k-m} \left(p(1-q)\right)^{k-m} (1-p)^{n-k}  \right)</math>
  &= \binom{n}{m} (pq)^m \left( \sum_{k=m}^n \binom{n-m}{k-m} \left(p(1-q)\right)^{k-m} (1-p)^{n-k}  \right)
  −
 
  −
\end{align}</math>
      
After substituting <math> i = k - m </math> in the expression above, we get
 
After substituting <math> i = k - m </math> in the expression above, we get
16

个编辑

导航菜单