更改

跳到导航 跳到搜索
添加1,378字节 、 2020年11月29日 (日) 21:20
第410行: 第410行:     
[[Mark Zemansky|M. Zemansky]] also distinguishes mechanical, chemical, and thermal equilibrium. He then writes: "When the conditions for all three types of equilibrium are satisfied, the system is said to be in a state of thermodynamic equilibrium".<ref>[[Mark Zemansky|Zemansky, M.]] (1937/1968), p. 27.</ref>
 
[[Mark Zemansky|M. Zemansky]] also distinguishes mechanical, chemical, and thermal equilibrium. He then writes: "When the conditions for all three types of equilibrium are satisfied, the system is said to be in a state of thermodynamic equilibrium".<ref>[[Mark Zemansky|Zemansky, M.]] (1937/1968), p. 27.</ref>
 +
 
'''<font color="#ff8000">M.泽曼斯基 M.Zemansky</font>'''还区分了机械、化学和热平衡。他接着写道: “当这三种均衡的条件都满足时,系统就处于热力学平衡状态。”
 
'''<font color="#ff8000">M.泽曼斯基 M.Zemansky</font>'''还区分了机械、化学和热平衡。他接着写道: “当这三种均衡的条件都满足时,系统就处于热力学平衡状态。”
   第419行: 第420行:  
[[Philip M. Morse|P.M. Morse]] writes that thermodynamics is concerned with "''states of thermodynamic equilibrium''". He also uses the phrase "thermal equilibrium" while discussing transfer of energy as heat between a body and a heat reservoir in its surroundings, though not explicitly defining a special term 'thermal equilibrium'.<ref>[[Philip M. Morse|Morse, P.M.]] (1969), pp. 6, 37.</ref>
 
[[Philip M. Morse|P.M. Morse]] writes that thermodynamics is concerned with "''states of thermodynamic equilibrium''". He also uses the phrase "thermal equilibrium" while discussing transfer of energy as heat between a body and a heat reservoir in its surroundings, though not explicitly defining a special term 'thermal equilibrium'.<ref>[[Philip M. Morse|Morse, P.M.]] (1969), pp. 6, 37.</ref>
   −
P.M.Morse写道,热力学关注的是“热力学平衡状态”。在讨论物体与周围热源之间的热量传递时,他也使用了“热平衡”这个短语,尽管没有明确定义一个特殊的术语“热平衡”
+
'''<font color="#ff8000">P.M.莫尔斯 P.M.Morse</font>'''写道,热力学关注的是“热力学平衡状态”。在讨论物体与周围热源之间的热量传递时,他也使用了“热平衡”这个短语,尽管没有明确定义一个特殊的术语“热平衡”
    
J.R. Waldram writes of "a definite thermodynamic state". He defines the term "thermal equilibrium" for a system "when its observables have ceased to change over time". But shortly below that definition he writes of a piece of glass that has not yet reached its "full thermodynamic equilibrium state".
 
J.R. Waldram writes of "a definite thermodynamic state". He defines the term "thermal equilibrium" for a system "when its observables have ceased to change over time". But shortly below that definition he writes of a piece of glass that has not yet reached its "full thermodynamic equilibrium state".
第428行: 第429行:     
J.R. Waldram writes of "a definite thermodynamic state". He defines the term "thermal equilibrium" for a system "when its observables have ceased to change over time". But shortly below that definition he writes of a piece of glass that has not yet reached its "''full'' thermodynamic equilibrium state".<ref>Waldram, J.R. (1985), p. 5.</ref>
 
J.R. Waldram writes of "a definite thermodynamic state". He defines the term "thermal equilibrium" for a system "when its observables have ceased to change over time". But shortly below that definition he writes of a piece of glass that has not yet reached its "''full'' thermodynamic equilibrium state".<ref>Waldram, J.R. (1985), p. 5.</ref>
 +
 +
J.R. Waldram写到了“一个明确的热力学状态”。他将一个系统定义为“当其观测量随时间停止变化时”的“热平衡”。但是在这个定义之下不久,他写到一块玻璃还没有达到“完全的热力学平衡状态”。
    
Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, thermodynamic equilibrium is said to exist." He is not here considering the presence of an external force field.
 
Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, thermodynamic equilibrium is said to exist." He is not here considering the presence of an external force field.
第434行: 第437行:        +
Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, ''thermodynamic equilibrium'' is said to exist." He is not here considering the presence of an external force field.<ref>Bailyn, M. (1994), p. 21.</ref>
   −
Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, ''thermodynamic equilibrium'' is said to exist." He is not here considering the presence of an external force field.<ref>Bailyn, M. (1994), p. 21.</ref>
+
考虑到平衡状态,M.Bailyn写道: “每个密集型变量都有自己的平衡类型。”然后他定义了热平衡、力学平衡和物质平衡。因此,他写道: “如果所有的密集变量都是一致的,那么热力学平衡就是存在的。”他在这里没有考虑外力场的存在。
    
J.G. Kirkwood and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of thermodynamic equilibrium if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied.
 
J.G. Kirkwood and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of thermodynamic equilibrium if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied.
   −
J.g.Kirkwood 和 i. Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在分配给实验的时间内,(a)它的密集特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个密集性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的密集性质都相等。热力学平衡状态可以由这个子类定义,只要满足其他一些条件。
+
J.G.Kirkwood 和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在分配给实验的时间内,(a)它的密集特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个密集性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的密集性质都相等。热力学平衡状态可以由这个子类定义,只要满足其他一些条件。
          
[[John Gamble Kirkwood|J.G. Kirkwood]] and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of ''thermodynamic equilibrium'' if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied.<ref>Kirkwood, J.G., Oppenheim, I. (1961), p. 2</ref>
 
[[John Gamble Kirkwood|J.G. Kirkwood]] and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of ''thermodynamic equilibrium'' if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied.<ref>Kirkwood, J.G., Oppenheim, I. (1961), p. 2</ref>
 +
 +
'''<font color="#ff8000">J.G.柯克伍德 J.G.Kirkwood</font>'''和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在分配给实验的时间内,(a)它的密集特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个密集性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的密集性质都相等。热力学平衡状态可以由这个子类定义,只要满足其他一些条件。
    
==Characteristics of a state of internal thermodynamic equilibrium==
 
==Characteristics of a state of internal thermodynamic equilibrium==
307

个编辑

导航菜单