更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
零和博弈
(查看源代码)
2020年12月5日 (六) 19:13的版本
删除37字节
、
2020年12月5日 (六) 19:13
→解答
第75行:
第75行:
通过求解给定线性规划的对偶问题,可以找到最小化博弈者的均衡混合策略。或者,也可以通过使用上述过程来求解修正的支付矩阵,即 {{mvar|M}}的转置和否定(添加一个常数使其为正),然后求解结果博弈。
通过求解给定线性规划的对偶问题,可以找到最小化博弈者的均衡混合策略。或者,也可以通过使用上述过程来求解修正的支付矩阵,即 {{mvar|M}}的转置和否定(添加一个常数使其为正),然后求解结果博弈。
−
如果找到线性规划的所有解,它们将构成博弈的所有''' 纳什均'''。相反,任何线性程序都可以通过使用变量上述方程形式的变化,将其转换为两人零和博弈。所以,一般来说,这种游戏相当于线性程序。
{{citation needed|date=October 2010}}
+
如果找到线性规划的所有解,它们将构成博弈的所有''' 纳什均'''。相反,任何线性程序都可以通过使用变量上述方程形式的变化,将其转换为两人零和博弈。所以,一般来说,这种游戏相当于线性程序。
=== 通解 ===
=== 通解 ===
打豆豆
421
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本