A monograph on classical thermodynamics by H.A. Buchdahl considers the "equilibrium of a thermodynamic system", without actually writing the phrase "thermodynamic equilibrium". Referring to systems closed to exchange of matter, Buchdahl writes: "If a system is in a terminal condition which is properly static, it will be said to be in equilibrium." Buchdahl's monograph also discusses amorphous glass, for the purposes of thermodynamic description. It states: "More precisely, the glass may be regarded as being in equilibrium so long as experimental tests show that 'slow' transitions are in effect reversible." It is not customary to make this proviso part of the definition of thermodynamic equilibrium, but the converse is usually assumed: that if a body in thermodynamic equilibrium is subject to a sufficiently slow process, that process may be considered to be sufficiently nearly reversible, and the body remains sufficiently nearly in thermodynamic equilibrium during the process. | A monograph on classical thermodynamics by H.A. Buchdahl considers the "equilibrium of a thermodynamic system", without actually writing the phrase "thermodynamic equilibrium". Referring to systems closed to exchange of matter, Buchdahl writes: "If a system is in a terminal condition which is properly static, it will be said to be in equilibrium." Buchdahl's monograph also discusses amorphous glass, for the purposes of thermodynamic description. It states: "More precisely, the glass may be regarded as being in equilibrium so long as experimental tests show that 'slow' transitions are in effect reversible." It is not customary to make this proviso part of the definition of thermodynamic equilibrium, but the converse is usually assumed: that if a body in thermodynamic equilibrium is subject to a sufficiently slow process, that process may be considered to be sufficiently nearly reversible, and the body remains sufficiently nearly in thermodynamic equilibrium during the process. |