第554行: |
第554行: |
| | | |
| ''Step1: Initialization:<br />''Randomly place <math>K</math> ants on the image <math>I_{M_1 M_2}</math> where <math>K= (M_1*M_2)^\tfrac{1}{2}</math> . Pheromone matrix <math>\tau_{(i,j)}</math> are initialized with a random value. The major challenge in the initialization process is determining the heuristic matrix. | | ''Step1: Initialization:<br />''Randomly place <math>K</math> ants on the image <math>I_{M_1 M_2}</math> where <math>K= (M_1*M_2)^\tfrac{1}{2}</math> . Pheromone matrix <math>\tau_{(i,j)}</math> are initialized with a random value. The major challenge in the initialization process is determining the heuristic matrix. |
− |
| |
− | <math>Z =\sum_{i=1:M_1} \sum_{j=1:M_2} Vc(I_{i,j})</math>, which is a normalization factor
| |
− | 是一个归一化因子
| |
− |
| |
− |
| |
| | | |
| There are various methods to determine the heuristic matrix. For the below example the heuristic matrix was calculated based on the local statistics: | | There are various methods to determine the heuristic matrix. For the below example the heuristic matrix was calculated based on the local statistics: |
− |
| |
− | <math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\
| |
| | | |
| the local statistics at the pixel position (i,j). | | the local statistics at the pixel position (i,j). |
− |
| |
− | & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\
| |
− |
| |
− | & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\
| |
| | | |
| <math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math> | | <math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math> |
− |
| |
− | & + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math>
| |
− |
| |
− |
| |
| | | |
| Where <math>I</math> is the image of size <math>M_1*M_2</math><br /> | | Where <math>I</math> is the image of size <math>M_1*M_2</math><br /> |
| + | <math>Z =\sum_{i=1:M_1} \sum_{j=1:M_2} Vc(I_{i,j})</math>, which is a normalization factor 是一个归一化因子 |
| | | |
− | <math>f(\cdot)</math> can be calculated using the following functions:<br /><math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br /><math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)} </math><br /><math>f(x) =
| |
− |
| |
− | < math > f (cdot) </math > 可以用以下函数计算: < br/> < math > f (x) = lambda x,quad text { for x ≥0; (1)} </math > < br/> < math > f (x) = lambda x ^ 2,quad text { for x ≥0; (2)} </math > < br/> < math > f (x) =
| |
− |
| |
− | <math>Z =\sum_{i=1:M_1} \sum_{j=1:M_2} Vc(I_{i,j})</math>, which is a normalization factor
| |
− |
| |
− | \begin{cases}
| |
− |
| |
− | 开始{ cases }
| |
− |
| |
− |
| |
− |
| |
− | \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\
| |
| <math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\ | | <math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\ |
− |
| |
− | 0, & \text{else}
| |
− |
| |
| & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\ | | & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\ |
− |
| |
− | \end{cases}</math><br /><math>f(x) =
| |
− |
| |
| & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\ | | & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\ |
− |
| |
− | \begin{cases}
| |
− |
| |
| & + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math> | | & + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math> |
| | | |
− | \pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\ | + | <math>f(\cdot)</math> can be calculated using the following functions:<br /><math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br /><math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)} </math><br /><math>f(x) = |
− | | |
− | | |
| | | |
| + | < math > f (cdot) </math > 可以用以下函数计算: |
| + | <br /> |
| + | <math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br /> |
| + | <math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)}</math><br /> |
| + | <math>f(x) =\begin{cases} |
| + | \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\ |
| 0, & \text{else} | | 0, & \text{else} |
| + | \end{cases}</math><br /> |
| + | <math>f(x) =\begin{cases}\pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\ |
| + | 0, & \text{else}\end{cases}</math> |
| | | |
− | <math>f(\cdot)</math> can be calculated using the following functions:<br /><math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br /><math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)} </math><br /><math>f(x) =
| + | The parameter <math>\lambda</math> in each of above functions adjusts the functions’ respective shapes.<br />Step 2 Construction process:<br />The ant's movement is based on 4-connected pixels or 8-connected pixels. The probability with which the ant moves is given by the probability equation <math>P_{x,y}</math><br />Step 3 and Step 5 Update process:<br />The pheromone matrix is updated twice. in step 3 the trail of the ant (given by <math>\tau_{(x,y)}</math> ) is updated where as in step 5 the evaporation rate of the trail is updated which is given by the below equation.<br /><math> |
− | | |
− | \end{cases}</math><br />The parameter <math>\lambda</math> in each of above functions adjusts the functions’ respective shapes.<br />Step 2 Construction process:<br />The ant's movement is based on 4-connected pixels or 8-connected pixels. The probability with which the ant moves is given by the probability equation <math>P_{x,y}</math><br />Step 3 and Step 5 Update process:<br />The pheromone matrix is updated twice. in step 3 the trail of the ant (given by <math>\tau_{(x,y)}</math> ) is updated where as in step 5 the evaporation rate of the trail is updated which is given by the below equation.<br /><math>
| |
− | | |
− | 上面每个函数中的参数 < math > lambda </math > 用来调整函数各自的形状。< br/> 步骤2构建过程: <br/> 蚂蚁的移动是在4个连接的像素或8个连接的像素进行的。根据概率方程< math > p _ { x,y } </math > 给出蚂蚁移动的概率< br/> 步骤3与步骤5更新过程 < br/> 信息素矩阵更新两次。在步骤3中,蚂蚁(由 < math > tau _ {(x,y)} </math > 给出)的踪迹被更新,就像在步骤5中,蚂蚁的踪迹蒸发率由下面的方程进行更新。[数学]
| |
− | | |
− | \begin{cases}
| |
| | | |
| + | 上面每个函数中的参数 < math > lambda </math > 用来调整函数各自的形状。< br/> 步骤2构建过程: <br/> 蚂蚁的移动是在4个连接的像素或8个连接的像素进行的。根据概率方程< math > p _ { x,y } </math > 给出蚂蚁移动的概率< br/> 步骤3与步骤5更新过程 < br/> 信息素矩阵更新两次。在步骤3中,蚂蚁(由 < math > tau _ {(x,y)} </math > 给出)的踪迹被更新,就像在步骤5中,蚂蚁的踪迹蒸发率由下面的方程进行更新。 |
| + | <br /><math> |
| \tau_{new} \leftarrow | | \tau_{new} \leftarrow |
− |
| |
− | \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\
| |
− |
| |
| (1-\psi)\tau_{old} + \psi \tau_{0} | | (1-\psi)\tau_{old} + \psi \tau_{0} |
− |
| |
− | 0, & \text{else}
| |
− |
| |
| </math>, where <math>\psi</math> is the pheromone decay coefficient <math>0< \tau <1</math> | | </math>, where <math>\psi</math> is the pheromone decay coefficient <math>0< \tau <1</math> |
| | | |
| 这里是信息素衰减系数。 | | 这里是信息素衰减系数。 |
| | | |
− | \end{cases}</math><br /><math>f(x) =
| |
− |
| |
− | \begin{cases}
| |
| | | |
| Step 7 Decision Process:<br />Once the K ants have moved a fixed distance L for N iteration, the decision whether it is an edge or not is based on the threshold T on the pheromone matrix τ. Threshold for the below example is calculated based on Otsu's method. | | Step 7 Decision Process:<br />Once the K ants have moved a fixed distance L for N iteration, the decision whether it is an edge or not is based on the threshold T on the pheromone matrix τ. Threshold for the below example is calculated based on Otsu's method. |
第639行: |
第597行: |
| 步骤7决策过程: 一旦 k 只蚂蚁在 n 次迭代中移动了一个固定的距离 l,可以基于信息素矩阵 τ 上的阈值 T判断它是否是一个边缘。下面例子的阈值是根据 Otsu 的方法计算的。 | | 步骤7决策过程: 一旦 k 只蚂蚁在 n 次迭代中移动了一个固定的距离 l,可以基于信息素矩阵 τ 上的阈值 T判断它是否是一个边缘。下面例子的阈值是根据 Otsu 的方法计算的。 |
| | | |
− | \pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\
| |
− |
| |
− | 0, & \text{else}
| |
| | | |
− | Image Edge detected using ACO:<br />The images below are generated using different functions given by the equation (1) to (4). | + | Image Edge detected using ACO:<br />The images below are generated using different functions given by the equation (1) to (4).<br />The images below are generated using different functions given by the equation (1) to (4).<ref>{{cite web|title=File Exchange {{ndash}} Ant Colony Optimization (ACO)|website=[[MATLAB]] Central|url=http://www.mathworks.com/matlabcentral/fileexchange/32009-ant-colony-optimization--aco-}}</ref> |
| + | [[File:(a)Original Image (b)Image Generated using equation(1) (c)Image generated using equation(2) (d) Image generated using equation(3) (e)Image generated using equation(4).jpg|none|thumb]] |
| | | |
| 使用 ACO 检测图像边缘: < br/> 下面的图像是使用方程(1)至(4)给出的不同函数生成的。 | | 使用 ACO 检测图像边缘: < br/> 下面的图像是使用方程(1)至(4)给出的不同函数生成的。 |
| | | |
− | \end{cases}</math><br />The parameter <math>\lambda</math> in each of above functions adjusts the functions’ respective shapes.<br />''Step 2 Construction process:<br />''The ant's movement is based on [[4-connected neighborhood|4-connected]] [[pixel]]s or [[8-connected]] [[pixel]]s. The probability with which the ant moves is given by the probability equation <math>P_{x,y}</math><br />''Step 3 and Step 5 Update process:<br />''The pheromone matrix is updated twice. in step 3 the trail of the ant (given by <math>\tau_{(x,y)}</math> ) is updated where as in step 5 the evaporation rate of the trail is updated which is given by the below equation.<br /><math> | + | \end{cases}</math><br />The parameter <math>\lambda</math> in each of above functions adjusts the functions’ respective shapes.<br />''Step 2 Construction process:<br />''The ant's movement is based on [[4-connected neighborhood|4-connected]] [[pixel]]s or [[8-connected]] [[pixel]]s. The probability with which the ant moves is given by the probability equation <math>P_{x,y}</math><br />''Step 3 and Step 5 Update process:<br />''The pheromone matrix is updated twice. in step 3 the trail of the ant (given by <math>\tau_{(x,y)}</math> ) is updated where as in step 5 the evaporation rate of the trail is updated which is given by the below equation. |
− | | + | <br /><math> |
− | thumb
| |
− | | |
− | 拇指
| |
− | | |
| \tau_{new} \leftarrow | | \tau_{new} \leftarrow |
− |
| |
| (1-\psi)\tau_{old} + \psi \tau_{0} | | (1-\psi)\tau_{old} + \psi \tau_{0} |
− |
| |
| </math>, where <math>\psi</math> is the pheromone decay coefficient <math>0< \tau <1</math> | | </math>, where <math>\psi</math> is the pheromone decay coefficient <math>0< \tau <1</math> |
| | | |
− |
| |
− |
| |
− | ''Step 7 Decision Process:<br />''Once the K ants have moved a fixed distance L for N iteration, the decision whether it is an edge or not is based on the threshold T on the pheromone matrixτ. Threshold for the below example is calculated based on [[Otsu's method]].
| |
− |
| |
− |
| |
− |
| |
− | Image Edge detected using ACO:<br />The images below are generated using different functions given by the equation (1) to (4).<ref>{{cite web|title=File Exchange {{ndash}} Ant Colony Optimization (ACO)|website=[[MATLAB]] Central|url=http://www.mathworks.com/matlabcentral/fileexchange/32009-ant-colony-optimization--aco-}}</ref>
| |
| | | |
| [[File:(a)Original Image (b)Image Generated using equation(1) (c)Image generated using equation(2) (d) Image generated using equation(3) (e)Image generated using equation(4).jpg|none|thumb]] | | [[File:(a)Original Image (b)Image Generated using equation(1) (c)Image generated using equation(2) (d) Image generated using equation(3) (e)Image generated using equation(4).jpg|none|thumb]] |