更改

跳到导航 跳到搜索
无编辑摘要
第5行: 第5行:  
动力系统也可以由算子方程来描述。[[算子]] operators ,在物理学领域一般译为算符,它是函数空间到函数空间的映射。物理学中的这个函数空间一般指[[希尔伯特空间]],其中的元素表示物理状态。考虑函数空间 <math>\mathcal F_1,F_2</math> ,算子<math>O:\mathcal F_1 \to \mathcal F_2</math> 就是说,它把函数空间<math>\mathcal F_1</math>中的元素映射为<math>\mathcal F_2</math>中的元素。例如我们考虑<math>\mathcal F</math>为一元光滑函数空间,由一元无限可导函数构成,若有算子<math>O:\mathcal F \to \mathcal F</math> 满足 <math>\forall f\in\mathcal F,\ O(f)=f'</math>,这里<math>f'\in\mathcal F</math>是函数<math>f</math>的导函数,那么我们就称算子<math>O</math>为“微分算子” differential operator。类似地,其他对函数的映射(有时也称为“操作” operation,或“变换” transform)也可以被看做是算子,例如傅里叶变换等。从这种角度来看,微分方程和差分方程,也可以在一定条件下被看作是微分/差分算子方程。
 
动力系统也可以由算子方程来描述。[[算子]] operators ,在物理学领域一般译为算符,它是函数空间到函数空间的映射。物理学中的这个函数空间一般指[[希尔伯特空间]],其中的元素表示物理状态。考虑函数空间 <math>\mathcal F_1,F_2</math> ,算子<math>O:\mathcal F_1 \to \mathcal F_2</math> 就是说,它把函数空间<math>\mathcal F_1</math>中的元素映射为<math>\mathcal F_2</math>中的元素。例如我们考虑<math>\mathcal F</math>为一元光滑函数空间,由一元无限可导函数构成,若有算子<math>O:\mathcal F \to \mathcal F</math> 满足 <math>\forall f\in\mathcal F,\ O(f)=f'</math>,这里<math>f'\in\mathcal F</math>是函数<math>f</math>的导函数,那么我们就称算子<math>O</math>为“微分算子” differential operator。类似地,其他对函数的映射(有时也称为“操作” operation,或“变换” transform)也可以被看做是算子,例如傅里叶变换等。从这种角度来看,微分方程和差分方程,也可以在一定条件下被看作是微分/差分算子方程。
   −
从物理学的角度来看,连续动力系统是经典力学的推广。具体来说,我们不再受限于利用最小作用原理,从[[欧拉-拉格朗日方程]]方程导出运动方程,而是直接构造运动方程,并把它接受为公设,接下来主要研究由这一运动方程所描述系统的演化。注意,这里所说的运动方程 equations of motion 不应与运动学方程 kinematic equations 相混淆。前者是对运动 motion 建模而成的方程,包括动力学方程和运动学方程。而后者,运动学方程,专指比较简单的情况,例如只考虑加速度为常数时的运动方程。目前,运动学方程主要出现在高中物理教材,以及机器人学方面的材料中。
+
从物理学的角度来看,连续动力系统是经典力学的推广。具体来说,我们不再受限于利用最小作用原理,从[[欧拉-拉格朗日方程]]方程导出运动方程,而是直接构造运动方程,并把它接受为公设,接下来主要研究由这一运动方程所描述系统的演化。注意,这里所说的运动方程 equations of motion 不应与运动学方程 kinematic equations 相混淆。前者是对运动 motion 建模而成的方程,包括动力学方程和运动学方程。而后者,运动学方程,专指比较简单的情况,例如只考虑加速度为常数时的运动方程。目前,运动学方程主要出现在高中物理教材,以及机器人学方面的材料中。
    
这项理论对动力系统的长期行为进行定性研究,研究系统运动方程的基本性质以及方程的解(当可解的时候)。这些系统主要是机械系统或其他物理过程系统,例如行星轨道和电子电路,以及出现在[[生物学]]、[[经济学]]、以及其他领域内的系统。大量现代研究主要着眼于探究一种特殊的动力系统,即[[混沌系统]] chaotic systems,这种系统初始状态的微小差异会导致完全不同的系统演化过程。
 
这项理论对动力系统的长期行为进行定性研究,研究系统运动方程的基本性质以及方程的解(当可解的时候)。这些系统主要是机械系统或其他物理过程系统,例如行星轨道和电子电路,以及出现在[[生物学]]、[[经济学]]、以及其他领域内的系统。大量现代研究主要着眼于探究一种特殊的动力系统,即[[混沌系统]] chaotic systems,这种系统初始状态的微小差异会导致完全不同的系统演化过程。
32

个编辑

导航菜单