第572行: |
第572行: |
| 上面每个函数中的参数<math>\lambda</math>用来调整函数各自的形状。 | | 上面每个函数中的参数<math>\lambda</math>用来调整函数各自的形状。 |
| | | |
− | Step 2 Construction process:<br />The ant's movement is based on 4-connected pixels or 8-connected pixels. The probability with which the ant moves is given by the probability equation <math>P_{x,y}</math><br />Step 3 and Step 5 Update process:<br />The pheromone matrix is updated twice. in step 3 the trail of the ant (given by <math>\tau_{(x,y)}</math> ) is updated where as in step 5 the evaporation rate of the trail is updated which is given by the below equation.<br /><math> | + | Step 2 Construction process:<br />The ant's movement is based on 4-connected pixels or 8-connected pixels. The probability with which the ant moves is given by the probability equation <math>P_{x,y}</math><br/>Step 3 and Step 5 Update process:<br />The pheromone matrix is updated twice. in step 3 the trail of the ant (given by <math>\tau_{(x,y)}</math> ) is updated where as in step 5 the evaporation rate of the trail is updated which is given by the below equation.<br /><math> |
| | | |
− | 步骤2构建过程: <br/>
| + | 步骤2构建过程: <br/> |
− | 蚂蚁的移动是在4个连接的像素或8个连接的像素进行的。根据概率方程<math>P_{x,y}</math>给出蚂蚁移动的概率<br />
| + | 蚂蚁的移动是在4个连接的像素或8个连接的像素进行的。根据概率方程<math>P_{x,y}</math>给出蚂蚁移动的概率<br/> |
− | 步骤3与步骤5更新过程<br />信息素矩阵更新两次。在步骤3中,蚂蚁(由<math>\tau_{(x,y)}</math>给出)的踪迹被更新,就像在步骤5中,蚂蚁的踪迹蒸发率由下面的方程进行更新。
| + | |
− | <br /><math> | + | 步骤3与步骤5更新过程<br/>信息素矩阵更新两次。在步骤3中,蚂蚁(由<math>\tau_{(x,y)}</math>给出)的踪迹被更新,就像在步骤5中,蚂蚁的踪迹蒸发率由下面的方程进行更新。 |
| + | <br/><math> |
| \tau_{new} \leftarrow | | \tau_{new} \leftarrow |
| (1-\psi)\tau_{old} + \psi \tau_{0} | | (1-\psi)\tau_{old} + \psi \tau_{0} |
第593行: |
第594行: |
| | | |
| Image Edge detected using ACO:<br />The images below are generated using different functions given by the equation (1) to (4).<ref>{{cite web|title=File Exchange {{ndash}} Ant Colony Optimization (ACO)|website=[[MATLAB]] Central|url=http://www.mathworks.com/matlabcentral/fileexchange/32009-ant-colony-optimization--aco-}}</ref> | | Image Edge detected using ACO:<br />The images below are generated using different functions given by the equation (1) to (4).<ref>{{cite web|title=File Exchange {{ndash}} Ant Colony Optimization (ACO)|website=[[MATLAB]] Central|url=http://www.mathworks.com/matlabcentral/fileexchange/32009-ant-colony-optimization--aco-}}</ref> |
| + | |
| 使用 ACO 检测图像边缘: < br/> 下面的图像是使用方程(1)至(4)给出的不同函数生成的。<ref>{{cite web|title=File Exchange {{ndash}} Ant Colony Optimization (ACO)|website=[[MATLAB]] Central|url=http://www.mathworks.com/matlabcentral/fileexchange/32009-ant-colony-optimization--aco-}}</ref> | | 使用 ACO 检测图像边缘: < br/> 下面的图像是使用方程(1)至(4)给出的不同函数生成的。<ref>{{cite web|title=File Exchange {{ndash}} Ant Colony Optimization (ACO)|website=[[MATLAB]] Central|url=http://www.mathworks.com/matlabcentral/fileexchange/32009-ant-colony-optimization--aco-}}</ref> |
| [[File:(a)Original Image (b)Image Generated using equation(1) (c)Image generated using equation(2) (d) Image generated using equation(3) (e)Image generated using equation(4).jpg|none|thumb]] | | [[File:(a)Original Image (b)Image Generated using equation(1) (c)Image generated using equation(2) (d) Image generated using equation(3) (e)Image generated using equation(4).jpg|none|thumb]] |
第700行: |
第702行: |
| * An [[estimation of distribution algorithm]] (EDA) is an [[evolutionary algorithm]] that substitutes traditional reproduction operators by model-guided operators. Such models are learned from the population by employing machine learning techniques and represented as probabilistic graphical models, from which new solutions can be sampled<ref>{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}</ref><ref>{{cite book|last1=Pelikan|first1=Martin|title=Hierarchical Bayesian optimization algorithm : toward a new generation of evolutionary algorithms|date=2005|publisher=Springer|location=Berlin [u.a.]|isbn=978-3-540-23774-7|edition=1st}}</ref> or generated from guided-crossover.<ref>{{cite book|last1=Thierens|first1=Dirk|s2cid=28648829|chapter=The Linkage Tree Genetic Algorithm|journal=Parallel Problem Solving from Nature, PPSN XI|date=11 September 2010|pages=264–273|doi=10.1007/978-3-642-15844-5_27|language=en|isbn=978-3-642-15843-8}}</ref><ref>{{cite journal|last1=Martins|first1=Jean P.|last2=Fonseca|first2=Carlos M.|last3=Delbem|first3=Alexandre C. B.|title=On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem|journal=Neurocomputing|date=25 December 2014|volume=146|pages=17–29|doi=10.1016/j.neucom.2014.04.069}}</ref> | | * An [[estimation of distribution algorithm]] (EDA) is an [[evolutionary algorithm]] that substitutes traditional reproduction operators by model-guided operators. Such models are learned from the population by employing machine learning techniques and represented as probabilistic graphical models, from which new solutions can be sampled<ref>{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}</ref><ref>{{cite book|last1=Pelikan|first1=Martin|title=Hierarchical Bayesian optimization algorithm : toward a new generation of evolutionary algorithms|date=2005|publisher=Springer|location=Berlin [u.a.]|isbn=978-3-540-23774-7|edition=1st}}</ref> or generated from guided-crossover.<ref>{{cite book|last1=Thierens|first1=Dirk|s2cid=28648829|chapter=The Linkage Tree Genetic Algorithm|journal=Parallel Problem Solving from Nature, PPSN XI|date=11 September 2010|pages=264–273|doi=10.1007/978-3-642-15844-5_27|language=en|isbn=978-3-642-15843-8}}</ref><ref>{{cite journal|last1=Martins|first1=Jean P.|last2=Fonseca|first2=Carlos M.|last3=Delbem|first3=Alexandre C. B.|title=On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem|journal=Neurocomputing|date=25 December 2014|volume=146|pages=17–29|doi=10.1016/j.neucom.2014.04.069}}</ref> |
| | | |
− | An [[estimation of distribution algorithm]] (EDA) is an [[evolutionary algorithm]] that substitutes traditional reproduction operators by model-guided operators. Such models are learned from the population by employing machine learning techniques and represented as probabilistic graphical models, from which new solutions can be sampled or generated from guided-crossover.
| + | |
− | 分布估计算法(EDA)是一种进化算法,它用模型引导的算子代替传统的复制算子。这类模型通过机器学习技术从群体中学习,并以概率图形模型表示,从中可以通过抽样或引导交叉生成新的解。
| + | 分布估计算法(EDA)是一种进化算法,它用模型引导的算子代替传统的复制算子。这类模型通过机器学习技术从群体中学习,并以概率图形模型表示,从中可以通过抽样<ref>{{cite book|last1=Pelikan|first1=Martin|last2=Goldberg|first2=David E.|last3=Cantú-Paz|first3=Erick|title=BOA: The Bayesian Optimization Algorithm|journal=Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1|date=1 January 1999|pages=525–532|url=http://dl.acm.org/citation.cfm?id=2933973|isbn=9781558606111|series=Gecco'99}}</ref><ref>{{cite book|last1=Pelikan|first1=Martin|title=Hierarchical Bayesian optimization algorithm : toward a new generation of evolutionary algorithms|date=2005|publisher=Springer|location=Berlin [u.a.]|isbn=978-3-540-23774-7|edition=1st}}</ref>或引导交叉<ref>{{cite book|last1=Thierens|first1=Dirk|s2cid=28648829|chapter=The Linkage Tree Genetic Algorithm|journal=Parallel Problem Solving from Nature, PPSN XI|date=11 September 2010|pages=264–273|doi=10.1007/978-3-642-15844-5_27|language=en|isbn=978-3-642-15843-8}}</ref><ref>{{cite journal|last1=Martins|first1=Jean P.|last2=Fonseca|first2=Carlos M.|last3=Delbem|first3=Alexandre C. B.|title=On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem|journal=Neurocomputing|date=25 December 2014|volume=146|pages=17–29|doi=10.1016/j.neucom.2014.04.069}}</ref>生成新的解。 |
| | | |
| | | |
第725行: |
第727行: |
| *[[Intelligent Water Drops|Intelligent water drops]] (IWD), a swarm-based optimization algorithm based on natural water drops flowing in rivers | | *[[Intelligent Water Drops|Intelligent water drops]] (IWD), a swarm-based optimization algorithm based on natural water drops flowing in rivers |
| 智能水滴(IWD),一种基于自然水滴在河流中流动的群优化算法 | | 智能水滴(IWD),一种基于自然水滴在河流中流动的群优化算法 |
− |
| |
| | | |
| * [[Stochastic diffusion search]] (SDS), an agent-based probabilistic global search and optimization technique best suited to problems where the objective function can be decomposed into multiple independent partial-functions | | * [[Stochastic diffusion search]] (SDS), an agent-based probabilistic global search and optimization technique best suited to problems where the objective function can be decomposed into multiple independent partial-functions |