第229行: |
第229行: |
| In predictive coding, optimising model parameters through a gradient ascent on the time integral of free energy (free action) reduces to associative or Hebbian plasticity and is associated with synaptic plasticity in the brain. | | In predictive coding, optimising model parameters through a gradient ascent on the time integral of free energy (free action) reduces to associative or Hebbian plasticity and is associated with synaptic plasticity in the brain. |
| | | |
− | 在预测编码中,通过自由能时间积分(自由作用)的梯度上升来优化模型参数,降低到联想或赫布可塑性,并与大脑中的突触可塑性有关。
| + | 在预测编码中,通过自由能时间积分(自由作用)的梯度上升来优化模型参数会降低到联想或赫伯可塑性,并与大脑中的突触可塑性有关。 |
| | | |
| + | Free energy minimisation is equivalent to maximising the [[mutual information]] between sensory states and internal states that parameterise the variational density (for a fixed entropy variational density).<ref name="Friston" />{{Better source|date=February 2020|reason=MDPI is a questionable source}} This relates free energy minimization to the principle of minimum redundancy<ref>Barlow, H. (1961). [http://www.trin.cam.ac.uk/horacebarlow/21.pdf Possible principles underlying the transformations of sensory messages] {{Webarchive|url=https://web.archive.org/web/20120603182706/http://www.trin.cam.ac.uk/horacebarlow/21.pdf |date=2012-06-03 }}. In W. Rosenblith (Ed.), Sensory Communication (pp. 217-34). Cambridge, MA: MIT Press.</ref> and related treatments using information theory to describe optimal behaviour.<ref>Linsker, R. (1990). [https://www.annualreviews.org/doi/pdf/10.1146/annurev.ne.13.030190.001353 Perceptual neural organization: some approaches based on network models and information theory]. Annu Rev Neurosci. , 13, 257–81.</ref><ref>Bialek, W., Nemenman, I., & Tishby, N. (2001). [http://www.princeton.edu/~wbialek/our_papers/bnt_01a.pdf Predictability, complexity, and learning]. Neural Computat., 13 (11), 2409–63.</ref> |
| | | |
− | | + | 自由能最小化相当于最大化感官状态和内部状态之间的[[互信息]],使变分密度参数化(对于固定熵变分密度)<ref name="Friston" />{{Better source|date=February 2020|reason=MDPI is a questionable source}}这将自由能最小化与最小冗余原则联系起来。<ref>Barlow, H. (1961). [http://www.trin.cam.ac.uk/horacebarlow/21.pdf Possible principles underlying the transformations of sensory messages] {{Webarchive|url=https://web.archive.org/web/20120603182706/http://www.trin.cam.ac.uk/horacebarlow/21.pdf |date=2012-06-03 }}. In W. Rosenblith (Ed.), Sensory Communication (pp. 217-34). Cambridge, MA: MIT Press.</ref>并且联系到用信息论描述最优行为的相关处理<ref>Linsker, R. (1990).[https://www.annualreviews.org/doi/pdf/10.1146/annurev.ne.13.030190.001353 Perceptual neural organization: some approaches based on network models and information theory]. Annu Rev Neurosci. , 13, 257–81.</ref><ref>Bialek, W., Nemenman, I., & Tishby, N. (2001). [http://www.princeton.edu/~wbialek/our_papers/bnt_01a.pdf Predictability, complexity, and learning]. Neural Computat., 13 (11), 2409–63.</ref> |
− | Free energy minimisation is equivalent to maximising the [[mutual information]] between sensory states and internal states that parameterise the variational density (for a fixed entropy variational density).<ref name="Friston" />{{Better source|date=February 2020|reason=MDPI is a questionable source}} This relates free energy minimization to the principle of minimum redundancy<ref>Barlow, H. (1961). [http://www.trin.cam.ac.uk/horacebarlow/21.pdf Possible principles underlying the transformations of sensory messages] {{Webarchive|url=https://web.archive.org/web/20120603182706/http://www.trin.cam.ac.uk/horacebarlow/21.pdf |date=2012-06-03 }}. In W. Rosenblith (Ed.), Sensory Communication (pp. 217-34). Cambridge, MA: MIT Press.</ref> and related treatments using information theory to describe optimal behaviour.<ref>Linsker, R. (1990).
| |
− | | |
− | [https://www.annualreviews.org/doi/pdf/10.1146/annurev.ne.13.030190.001353 Perceptual neural organization: some approaches based on network models and information theory]. Annu Rev Neurosci. , 13, 257–81.</ref><ref>Bialek, W., Nemenman, I., & Tishby, N. (2001). [http://www.princeton.edu/~wbialek/our_papers/bnt_01a.pdf Predictability, complexity, and learning]. Neural Computat., 13 (11), 2409–63.</ref> | |
| | | |
| | | |
第241行: |
第239行: |
| Optimizing the precision parameters corresponds to optimizing the gain of prediction errors (c.f., Kalman gain). In neuronally plausible implementations of predictive coding, | | Optimizing the precision parameters corresponds to optimizing the gain of prediction errors (c.f., Kalman gain). In neuronally plausible implementations of predictive coding, |
| | | |
− | 优化精度参数相当于优化预测误差的增益(cf,Kalman 增益)。在神经系统似是而非的预测编码实现中,
| + | 优化精度参数对应于优化预测误差的增益(c.f.,Kalman增益)。在预测编码的神经元似是而非的实现中, |
| | | |
| == Free energy minimisation in neuroscience 神经科学中的自由能最小化== | | == Free energy minimisation in neuroscience 神经科学中的自由能最小化== |