更改

跳到导航 跳到搜索
添加225字节 、 2020年12月29日 (二) 18:22
第289行: 第289行:  
When gradient descent is applied to action <math> \dot{a} = -\partial_aF(s,\tilde{\mu}) </math>, motor control can be understood in terms of classical reflex arcs that are engaged by descending (corticospinal) predictions. This provides a formalism that generalizes the equilibrium point solution – to the degrees of freedom problem – to movement trajectories.
 
When gradient descent is applied to action <math> \dot{a} = -\partial_aF(s,\tilde{\mu}) </math>, motor control can be understood in terms of classical reflex arcs that are engaged by descending (corticospinal) predictions. This provides a formalism that generalizes the equilibrium point solution – to the degrees of freedom problem – to movement trajectories.
   −
当梯度下降法应用于动作时,运动控制可以通过传统反射弧来理解,传统反射弧是通过皮质脊髓神经递质的预测来实现的。这提供了一个形式主义,概括了平衡点的解决方案-到自由度问题-到运动轨迹。
+
当梯度下降应用于动作<math>\dot{a}=-\partial\u aF(s,\tilde{\mu})</math>时,运动控制可以理解为通过下降(皮质脊髓)预测参与的经典反射弧。这提供了一种形式主义,将平衡点解推广——到自由度问题——到运动轨迹。
 
  −
 
      
In predictive coding, optimising model parameters through a gradient ascent on the time integral of free energy (free action) reduces to associative or [[Hebbian theory|Hebbian plasticity]] and is associated with [[synaptic plasticity]] in the brain.
 
In predictive coding, optimising model parameters through a gradient ascent on the time integral of free energy (free action) reduces to associative or [[Hebbian theory|Hebbian plasticity]] and is associated with [[synaptic plasticity]] in the brain.
   −
 
+
在预测编码中,通过自由能(自由作用)时间积分的梯度上升来优化模型参数会降低到联想或[[Hebbian理论| Hebbian可塑性]],并与大脑中的[[synaptic可塑性]]相关。
    
=== Perceptual precision, attention and salience 知觉的精确性、注意力和显著性===
 
=== Perceptual precision, attention and salience 知觉的精确性、注意力和显著性===
561

个编辑

导航菜单