| #向这个顶点添加一粒沙子,同时让其他顶点的沙粒数保持不变,也就是对于所有的<math>(x,y)\neq(x_i,y_i)</math>,设定<br /><math>z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1</math> 和<br /><math>z_i(x,y)=z_{i-1}(x,y)</math>。 | | #向这个顶点添加一粒沙子,同时让其他顶点的沙粒数保持不变,也就是对于所有的<math>(x,y)\neq(x_i,y_i)</math>,设定<br /><math>z_i(x_i,y_i)=z_{i-1}(x_i,y_i)+1</math> 和<br /><math>z_i(x,y)=z_{i-1}(x,y)</math>。 |
| #如果所有的顶点都是稳定的,即如果对于<math>(x,y)\in\Gamma</math>,<math>z_i(x,y)<4</math>,那么构型<math>z_i</math>被认为是稳定的。在这种情况下,继续下一轮迭代。 | | #如果所有的顶点都是稳定的,即如果对于<math>(x,y)\in\Gamma</math>,<math>z_i(x,y)<4</math>,那么构型<math>z_i</math>被认为是稳定的。在这种情况下,继续下一轮迭代。 |
− | #如果至少有一个顶点是不稳定的,即对于一些<math>(x_u,y_u)\in\Gamma</math>,<math>z_i(x_u,y_u)\geq 4</math>,<math>z_i</math>被认为是不稳定的。在这种情况下,随机选择任意不稳定顶点<math> (x_u,y_u)\in\Gamma</math>。将该顶点的沙粒数减少4个,清空这个顶点,并将其每个(最多4个)直接邻居的沙粒数增加1个。即:<br /><math>z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4,</math>, 如果 <math>( x_u \pm 1, y_u\pm 1)\in\Gamma</math>.<br />,<br /><math>z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1</math>。如果一个在边界的顶点产生崩塌,这将导致沙粒的净损失(两粒在网格的角落,一粒在其他地方)。 <font color="#ff8000">(two grains at the corner of the grid, one grain otherwise)</font> | + | #如果至少有一个顶点是不稳定的,即对于一些<math>(x_u,y_u)\in\Gamma</math>,<math>z_i(x_u,y_u)\geq 4</math>,<math>z_i</math>被认为是不稳定的。在这种情况下,随机选择任意不稳定顶点<math> (x_u,y_u)\in\Gamma</math>。将该顶点的沙粒数减少4个,清空这个顶点,并将其每个(最多4个)直接邻居的沙粒数增加1个。即:<br /><math>z_i(x_u,y_u) \rightarrow z_i(x_u,y_u) - 4,</math>, 如果 <math>( x_u \pm 1, y_u\pm 1)\in\Gamma</math>.<br />,<br /><math>z_i( x_u \pm 1, y_u \pm 1) \rightarrow z_i( x_u \pm 1, y_u\pm 1) + 1</math>。如果一个在边界的顶点产生崩塌,这将导致沙粒的净损失(两粒在网格的角落,否则为一粒)。 <font color="#ff8000">(two grains at the corner of the grid, one grain otherwise)</font> |