Let be the Jacobian matrix of the vector field at the point . If all eigenvalues of have strictly negative real part then the solution is asymptotically stable. This condition can be tested using the Routh–Hurwitz criterion. | Let be the Jacobian matrix of the vector field at the point . If all eigenvalues of have strictly negative real part then the solution is asymptotically stable. This condition can be tested using the Routh–Hurwitz criterion. |