更改

跳到导航 跳到搜索
添加43字节 、 2021年1月22日 (五) 14:12
无编辑摘要
第15行: 第15行:  
Quantum entanglement is a physical phenomenon that occurs when a pair or group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the pair or group cannot be described independently of the state of the others, including when the particles are separated by a large distance.  The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics lacking in classical mechanics.
 
Quantum entanglement is a physical phenomenon that occurs when a pair or group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the pair or group cannot be described independently of the state of the others, including when the particles are separated by a large distance.  The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics lacking in classical mechanics.
   −
量子纠缠是一种物理现象,当一对或一组粒子产生、相互作用或共享空间邻近时,这对或一组粒子的量子态不能独立于其他粒子的状态来描述,包括粒子被很大距离分开时。量子纠缠的主题是经典物理学和量子物理学之间差距的核心: 纠缠是量子力学缺乏的经典力学的一个主要特征。
+
量子纠缠是一种物理现象,描述的是当一对或一组粒子被产生、相互作用或共享空间邻近性时(包括当粒子被大距离分离时),该对或该组粒子中的每个粒子的量子态都无法独立于其他粒子的态。量子纠缠是经典物理学和量子物理学之间差别悬殊的核心问题:纠缠是量子力学的一个主要特征,而经典力学却没有这种特征。
 
        第23行: 第22行:  
Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, will be found to be counterclockwise. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a property of a particle results in an irreversible wave function collapse of that particle and will change the original quantum state. In the case of entangled particles, such a measurement will affect the entangled system as a whole.
 
Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, will be found to be counterclockwise. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a property of a particle results in an irreversible wave function collapse of that particle and will change the original quantum state. In the case of entangled particles, such a measurement will affect the entangled system as a whole.
   −
在某些情况下,对纠缠态粒子的物理性质如位置、动量、自旋和极化的测量可以被发现是完全相关的。例如,如果产生一对纠缠的粒子,它们的总自旋已知为零,并且其中一个粒子被发现在第一个轴上有顺时针的自旋,那么在同一个轴上测量的另一个粒子的自旋将被发现为逆时针方向。然而,这种行为产生了看似矛盾的效应: 任何对粒子性质的测量都会导致该粒子的不可逆波函数崩溃,并将改变原来的量子态。在纠缠粒子的情况下,这种测量会影响整个纠缠系统。
+
在某些情况下,对纠缠粒子的位置、动量、自旋和偏振等物理性质的测量可以被发现是完全相关的。例如,如果一对纠缠粒子的产生使得它们的总自旋已知为零,并且发现一个粒子在第一个轴上具有顺时针自旋,那么在同一个轴上测量的另一个粒子的自旋将被发现是逆时针的。然而,这种行为产生了看似矛盾的效应:对粒子性质的任何测量都会导致该粒子的不可逆波函数崩溃,并将改变原来的量子态。在粒子纠缠的情况下,这样的测量将影响整个纠缠系统。
     
153

个编辑

导航菜单