更改

跳到导航 跳到搜索
添加135字节 、 2021年1月24日 (日) 16:03
无编辑摘要
第12行: 第12行:  
Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Shannon to extend the idea of (Shannon) entropy, a measure of average surprisal of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not.
 
Differential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Shannon to extend the idea of (Shannon) entropy, a measure of average surprisal of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not.
   −
<font color="#ff8000"> 微分熵Differential entropy</font>(也被称为连续熵)是信息论中的一个概念,来源于香农尝试将他的熵的概念扩展到连续的概率分布。香农熵是衡量一个随机变量的平均惊异程度的指标。可惜的是,香农只是假设它是离散熵的正确连续模拟而并没有推导出公式,但事实上它并不是离散熵的正确连续模拟。
+
<font color="#ff8000"> 微分熵Differential entropy</font>(也被称为连续熵)是信息论中的一个概念,其来源于香农尝试将他的香农熵的概念扩展到连续的概率分布。香农熵是衡量一个随机变量的平均惊异程度的指标。可惜的是,香农只是假设它是离散熵的正确连续模拟而并没有推导出公式,但事实上它并不是离散熵的正确连续模拟。
      第34行: 第34行:  
  In particular, for a constant <math>a</math>
 
  In particular, for a constant <math>a</math>
   −
特别是对于一个常量
+
特别地,对于一个常量
    
|indent =
 
|indent =
第69行: 第69行:     
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
        第78行: 第77行:  
For probability distributions which don't have an explicit density function expression, but have an explicit [[quantile function]] expression, <math>Q(p)</math>, then <math>h(Q)</math> can be defined in terms of the derivative of <math>Q(p)</math> i.e. the quantile density function <math>Q'(p)</math> as <ref>{{Citation |last1=Vasicek  |first1=Oldrich |year=1976 |title=A Test for Normality Based on Sample Entropy |journal=[[Journal of the Royal Statistical Society, Series B]] |volume=38 |issue=1 |jstor=2984828 |postscript=. }}</ref>{{rp|54–59}}
 
For probability distributions which don't have an explicit density function expression, but have an explicit [[quantile function]] expression, <math>Q(p)</math>, then <math>h(Q)</math> can be defined in terms of the derivative of <math>Q(p)</math> i.e. the quantile density function <math>Q'(p)</math> as <ref>{{Citation |last1=Vasicek  |first1=Oldrich |year=1976 |title=A Test for Normality Based on Sample Entropy |journal=[[Journal of the Royal Statistical Society, Series B]] |volume=38 |issue=1 |jstor=2984828 |postscript=. }}</ref>{{rp|54–59}}
   −
 
+
--[[用户:CecileLi|CecileLi]]([[用户讨论:CecileLi|讨论]])  【审校】此处缺无格式的英文及翻译 补充:
 
   
:<math>h(Q) = \int_0^1 \log Q'(p)\,dp</math>.
 
:<math>h(Q) = \int_0^1 \log Q'(p)\,dp</math>.
  
526

个编辑

导航菜单