更改

跳到导航 跳到搜索
添加1,187字节 、 2021年1月26日 (二) 23:21
第695行: 第695行:  
| 光的偏振
 
| 光的偏振
   −
==Physical implementations==
+
==Physical implementations物理实现==
    
| Horizontal
 
| Horizontal
第708行: 第708行:     
Any [[two-state quantum system|two-level quantum-mechanical system]] can be used as a qubit. Multilevel systems can be used as well, if they possess two states that can be effectively decoupled from the rest (e.g., ground state and first excited state of a nonlinear oscillator). There are various proposals. Several physical implementations that approximate two-level systems to various degrees were successfully realized. Similarly to a classical bit where the state of a transistor in a processor, the magnetization of a surface in a [[hard disk]] and the presence of current in a cable can all be used to represent bits in the same computer, an eventual quantum computer is likely to use various combinations of qubits in its design.
 
Any [[two-state quantum system|two-level quantum-mechanical system]] can be used as a qubit. Multilevel systems can be used as well, if they possess two states that can be effectively decoupled from the rest (e.g., ground state and first excited state of a nonlinear oscillator). There are various proposals. Several physical implementations that approximate two-level systems to various degrees were successfully realized. Similarly to a classical bit where the state of a transistor in a processor, the magnetization of a surface in a [[hard disk]] and the presence of current in a cable can all be used to represent bits in the same computer, an eventual quantum computer is likely to use various combinations of qubits in its design.
 +
 +
任何[[双态量子系统|二能级量子力学系统]]都可以用作量子位。如果多电平系统具有两个能有效地与其他状态解耦的状态(例如,非线性振荡器的基态和第一激发态),则也可以使用多电平系统。有各种各样的建议。成功地实现了几种不同程度近似于两级系统的物理实现。类似于经典位,处理器中晶体管的状态,[[硬盘]中表面的磁化和电缆中电流的存在都可以用来表示同一台计算机中的位,最终的量子计算机可能会在其设计中使用各种量子位的组合。
    
|-
 
|-
第720行: 第722行:     
The following is an incomplete list of physical implementations of qubits, and the choices of basis are by convention only.
 
The following is an incomplete list of physical implementations of qubits, and the choices of basis are by convention only.
 +
 +
下面是量子比特物理实现的一个不完整的列表,其基础设定依惯例。
    
| Fock state
 
| Fock state
第954行: 第958行:     
| [[charge (physics)|Charge]]
 
| [[charge (physics)|Charge]]
 +
|[[电荷(物理)|电荷]]
    
| Superconducting charge qubit
 
| Superconducting charge qubit
第960行: 第965行:     
| No electron
 
| No electron
 +
|没有电子
    
| Charge
 
| Charge
第966行: 第972行:     
| One electron
 
| One electron
 +
|单电子
    
| Uncharged superconducting island (Q=0)
 
| Uncharged superconducting island (Q=0)
第978行: 第985行:     
| [[Atomic nucleus|Nucleus]]
 
| [[Atomic nucleus|Nucleus]]
 
+
|[[原子核]]
 
|-
 
|-
   第984行: 第991行:     
| [[Nuclear spin]] addressed through [[Nuclear magnetic resonance|NMR]]
 
| [[Nuclear spin]] addressed through [[Nuclear magnetic resonance|NMR]]
 +
|【核自旋】通过【核磁共振】
    
| Superconducting flux qubit
 
| Superconducting flux qubit
第1,122行: 第1,130行:     
| Energy
 
| Energy
 
+
|能量
 
| Non-abelian anyons
 
| Non-abelian anyons
 
+
|非阿贝尔任意子
 
| Non-abelian anyons
 
| Non-abelian anyons
 
+
|非阿贝尔任意子
 
| Ground state
 
| Ground state
 
+
|基态
 
| Braiding of Excitations
 
| Braiding of Excitations
   
| 编织激发
 
| 编织激发
    
| First excited state
 
| First excited state
 
+
|第一激发态
 
| Depends on specific topological system
 
| Depends on specific topological system
   第1,146行: 第1,153行:     
| Singly charged [[quantum dot]] pair
 
| Singly charged [[quantum dot]] pair
 +
|单电荷[[量子点]]对
    
|-
 
|-
第1,152行: 第1,160行:     
| Electron localization
 
| Electron localization
 
+
|电子局域化
 
|van der Waals heterostructure
 
|van der Waals heterostructure
   第1,164行: 第1,172行:     
| Electron on left dot
 
| Electron on left dot
 +
|左点上的电子
    
|Charge
 
|Charge
第1,170行: 第1,179行:     
| Electron on right dot
 
| Electron on right dot
 +
|右点上的电子
    
|Electron on bottom sheet
 
|Electron on bottom sheet
第1,182行: 第1,192行:     
| [[Quantum dot]]
 
| [[Quantum dot]]
 +
|[[量子点]]
    
|}
 
|}
第1,197行: 第1,208行:  
In a paper entitled "Solid-state quantum memory using the <sup>31</sup>P nuclear spin", published in the October 23, 2008, issue of the journal Nature, a team of scientists from the U.K. and U.S. reported the first relatively long (1.75 seconds) and coherent transfer of a superposition state in an electron spin "processing" qubit to a nuclear spin "memory" qubit. This event can be considered the first relatively consistent quantum data storage, a vital step towards the development of quantum computing. Recently, a modification of similar systems (using charged rather than neutral donors) has dramatically extended this time, to 3 hours at very low temperatures and 39 minutes at room temperature. Room temperature preparation of a qubit based on electron spins instead of nuclear spin was also demonstrated by a team of scientists from Switzerland and Australia.
 
In a paper entitled "Solid-state quantum memory using the <sup>31</sup>P nuclear spin", published in the October 23, 2008, issue of the journal Nature, a team of scientists from the U.K. and U.S. reported the first relatively long (1.75 seconds) and coherent transfer of a superposition state in an electron spin "processing" qubit to a nuclear spin "memory" qubit. This event can be considered the first relatively consistent quantum data storage, a vital step towards the development of quantum computing. Recently, a modification of similar systems (using charged rather than neutral donors) has dramatically extended this time, to 3 hours at very low temperatures and 39 minutes at room temperature. Room temperature preparation of a qubit based on electron spins instead of nuclear spin was also demonstrated by a team of scientists from Switzerland and Australia.
   −
在《自然》杂志2008年10月23日发表的一篇题为“使用 < sup > 31 </sup > p 核自旋的固态量子存储器”的论文中,一组来自英国和美国的科学家报告了第一个相对较长(1.75秒)的电子自旋中叠加态的“处理”量子位到核自旋“存储器”量子位的相干转移。这次事件可以被认为是第一次相对一致的量子数据存储,是量子计算发展的重要一步。最近,一种类似系统的改进(使用带电的而不是中性的捐赠者)已经戏剧性地延长了这个时间,在极低温度下3小时,在室温下39分钟。来自瑞士和澳大利亚的一组科学家也演示了基于电子自旋而不是核自旋的量子比特的室温准备。
+
在《自然》杂志2008年10月23日发表的一篇题为“使用 <sup>31</sup>P 核自旋的固态量子存储器”的论文中,一组来自英国和美国的科学家报告了第一个相对较长(1.75秒)的电子自旋中叠加态的“处理”量子位到核自旋“存储器”量子位的相干转移。这次事件可以被认为是第一次相对一致的量子数据存储,是量子计算发展的重要一步。最近,一种类似系统的改进(使用带电的而不是中性的捐赠者)已经戏剧性地延长了这个时间,在极低温度下3小时,在室温下39分钟。来自瑞士和澳大利亚的一组科学家也演示了基于电子自旋而不是核自旋的量子比特的室温准备。
    
|-
 
|-
    
| [[Topological order|Gapped topological system]]
 
| [[Topological order|Gapped topological system]]
 
+
|[[拓扑序|间隙拓扑系统]]
 
| Non-abelian [[anyon]]s
 
| Non-abelian [[anyon]]s
 +
|非交换[[anyon]]s
 +
|[[Braid group|Braiding of Excitations]]
 +
|[[编织群|激发编织]]
 +
|Depends on specific topological system
 +
|取决于特定的拓扑系统
 +
|Depends on specific topological system
 +
|取决于特定的拓扑系统
 +
|-
   −
| [[Braid group|Braiding of Excitations]]
+
|[[van der Waals heterostructure]]
 
  −
| Depends on specific topological system
  −
 
  −
| Depends on specific topological system
  −
 
  −
|-
     −
|[[van der Waals heterostructure]]<ref>
+
|范德华异质结构
 +
<ref>
    
{{cite journal
 
{{cite journal
第1,240行: 第1,254行:     
|Electron localization
 
|Electron localization
 
+
|电子局域化
 
|Charge
 
|Charge
 
+
|充电
 
Category:Quantum computing
 
Category:Quantum computing
   第1,248行: 第1,262行:     
|Electron on bottom sheet
 
|Electron on bottom sheet
 
+
|底片上的电子
 
Category:Quantum information science
 
Category:Quantum information science
  
561

个编辑

导航菜单