更改

跳到导航 跳到搜索
删除24字节 、 2021年1月26日 (二) 23:34
第685行: 第685行:  
Similar to the qubit, the [[qutrit]] is the unit of quantum information that can be realized in suitable 3-level quantum systems.  This is analogous to the unit of classical information [[trit (computing)|trit]] of [[ternary computer]]s.  Note, however, that not all 3-level quantum systems are qutrits.<ref>{{Cite web|url=https://physics.stackexchange.com/questions/342903/quantum-systems-three-level-vs-qutrit|title=Quantum systems: three-level vs qutrit|website=Physics Stack Exchange|access-date=2018-07-25}}</ref>  The term "'''qu-''d''-it'''" ('''''qu'''antum'' '''d'''''-g'''it''''') denotes the unit of quantum information that can be realized in suitable ''d''-level quantum systems.<ref>{{Cite journal|last1=Nisbet-Jones|first1=Peter B. R.|last2=Dilley|first2=Jerome|last3=Holleczek|first3=Annemarie|last4=Barter|first4=Oliver|last5=Kuhn|first5=Axel|date=2013|title=Photonic qubits, qutrits and ququads accurately prepared and delivered on demand|url=http://stacks.iop.org/1367-2630/15/i=5/a=053007|journal=New Journal of Physics|language=en|volume=15|issue=5|pages=053007|doi=10.1088/1367-2630/15/5/053007|issn=1367-2630|arxiv=1203.5614|bibcode=2013NJPh...15e3007N|s2cid=110606655}}</ref> In 2017, scientists at the [[National Institute of Scientific Research]] constructed a pair of qudits with 10 different states each, giving more computational power than 6 qubits.<ref>{{Cite web|url=https://spectrum.ieee.org/tech-talk/computing/hardware/qudits-the-real-future-of-quantum-computing|title=Qudits: The Real Future of Quantum Computing?|website=IEEE Spectrum|language=en|access-date=2017-06-29|date=2017-06-28}}</ref>
 
Similar to the qubit, the [[qutrit]] is the unit of quantum information that can be realized in suitable 3-level quantum systems.  This is analogous to the unit of classical information [[trit (computing)|trit]] of [[ternary computer]]s.  Note, however, that not all 3-level quantum systems are qutrits.<ref>{{Cite web|url=https://physics.stackexchange.com/questions/342903/quantum-systems-three-level-vs-qutrit|title=Quantum systems: three-level vs qutrit|website=Physics Stack Exchange|access-date=2018-07-25}}</ref>  The term "'''qu-''d''-it'''" ('''''qu'''antum'' '''d'''''-g'''it''''') denotes the unit of quantum information that can be realized in suitable ''d''-level quantum systems.<ref>{{Cite journal|last1=Nisbet-Jones|first1=Peter B. R.|last2=Dilley|first2=Jerome|last3=Holleczek|first3=Annemarie|last4=Barter|first4=Oliver|last5=Kuhn|first5=Axel|date=2013|title=Photonic qubits, qutrits and ququads accurately prepared and delivered on demand|url=http://stacks.iop.org/1367-2630/15/i=5/a=053007|journal=New Journal of Physics|language=en|volume=15|issue=5|pages=053007|doi=10.1088/1367-2630/15/5/053007|issn=1367-2630|arxiv=1203.5614|bibcode=2013NJPh...15e3007N|s2cid=110606655}}</ref> In 2017, scientists at the [[National Institute of Scientific Research]] constructed a pair of qudits with 10 different states each, giving more computational power than 6 qubits.<ref>{{Cite web|url=https://spectrum.ieee.org/tech-talk/computing/hardware/qudits-the-real-future-of-quantum-computing|title=Qudits: The Real Future of Quantum Computing?|website=IEEE Spectrum|language=en|access-date=2017-06-29|date=2017-06-28}}</ref>
   −
与量子位类似,[[量子树qutrit]]是可以在合适的三能级量子系统中实现的量子信息单位。这类似于[[三元计算机]]的经典信息单位[[trit(computing)| 树trit]]。<ref>{{Cite web|url=https://physics.stackexchange.com/questions/342903/quantum-systems-three-level-vs-qutrit|title=Quantum systems: three-level vs qutrit|website=Physics Stack Exchange|access-date=2018-07-25}}</ref>  The term "'''qu-''d''-it'''" ('''''qu'''antum'' '''d'''''-g'''it''''') denotes the unit of quantum information that can be realized in suitable ''d''-level quantum systems.<ref>{{Cite journal|last1=Nisbet-Jones|first1=Peter B. R.|last2=Dilley|first2=Jerome|last3=Holleczek|first3=Annemarie|last4=Barter|first4=Oliver|last5=Kuhn|first5=Axel|date=2013|title=Photonic qubits, qutrits and ququads accurately prepared and delivered on demand|url=http://stacks.iop.org/1367-2630/15/i=5/a=053007|journal=New Journal of Physics|language=en|volume=15|issue=5|pages=053007|doi=10.1088/1367-2630/15/5/053007|issn=1367-2630|arxiv=1203.5614|bibcode=2013NJPh...15e3007N|s2cid=110606655}}</ref> 2017年,[[国家科学研究院]]的科学家们构建了一对量子编辑,每个量子编辑有10种不同的状态,计算能力超过了6个量子比特。<ref>{{Cite web|url=https://spectrum.ieee.org/tech-talk/computing/hardware/qudits-the-real-future-of-quantum-computing|title=Qudits: The Real Future of Quantum Computing?|website=IEEE Spectrum|language=en|access-date=2017-06-29|date=2017-06-28}}</ref>
+
与量子位类似,[[量子树qutrit]]是可以在合适的三能级量子系统中实现的量子信息单位。这类似于[[三元计算机]]的经典信息单位[[trit(computing)| 树trit]]。<ref>{{Cite web|url=https://physics.stackexchange.com/questions/342903/quantum-systems-three-level-vs-qutrit|title=Quantum systems: three-level vs qutrit|website=Physics Stack Exchange|access-date=2018-07-25}}</ref>  术语 "'''qu-''d''-it'''" ('''''qu'''antum'' '''d'''''-g'''it''''')表示可在适当的“d”级量子系统中实现的量子信息单位。<ref>{{Cite journal|last1=Nisbet-Jones|first1=Peter B. R.|last2=Dilley|first2=Jerome|last3=Holleczek|first3=Annemarie|last4=Barter|first4=Oliver|last5=Kuhn|first5=Axel|date=2013|title=Photonic qubits, qutrits and ququads accurately prepared and delivered on demand|url=http://stacks.iop.org/1367-2630/15/i=5/a=053007|journal=New Journal of Physics|language=en|volume=15|issue=5|pages=053007|doi=10.1088/1367-2630/15/5/053007|issn=1367-2630|arxiv=1203.5614|bibcode=2013NJPh...15e3007N|s2cid=110606655}}</ref> 2017年,[[国家科学研究院]]的科学家们构建了一对qudit量子数,每个量子数qudit有10种不同的状态,计算能力超过了6个量子比特。<ref>{{Cite web|url=https://spectrum.ieee.org/tech-talk/computing/hardware/qudits-the-real-future-of-quantum-computing|title=Qudits: The Real Future of Quantum Computing?|website=IEEE Spectrum|language=en|access-date=2017-06-29|date=2017-06-28}}</ref>
    
| Polarization encoding
 
| Polarization encoding
561

个编辑

导航菜单